- Datawhale X 魔塔 Ai夏令营 --深度学习基础
一、局部极小值与全局极小值全局极小值:在损失函数的整个定义域内,损失值最小的点。这是我们在训练深度学习模型时希望找到的点,因为它代表着模型的最佳性能。局部极小值:在损失函数的一个局部区域内,损失值达到最小,但在整个函数定义域内可能不是最小的。当优化算法陷入局部极小值时,它可能会误以为已经找到了全局最优解,从而停止搜索。局部极小值的检测两种直观的方法来检测局部极小值:可视化方法:对于低维问题,我们可
- 【深度学习基础】PyTorch中model.eval()与with torch.no_grad()以及detach的区别与联系?
目录1.核心功能对比2.使用场景对比3.区别与联系4.典型代码示例(1)模型评估阶段(2)GAN训练中的判别器更新(3)提取中间特征5.关键区别总结6.常见问题与解决方案(1)问题:推理阶段显存爆掉(2)问题:Dropout/BatchNorm行为异常(3)问题:中间张量意外参与梯度计算7.最佳实践8.总结以下是PyTorch中model.eval()、withtorch.no_grad()和.d
- 深度学习基础与应用:从理论到实战
创新工场
本文还有配套的精品资源,点击获取简介:深度学习是人工智能的核心分支,通过模拟人脑神经网络处理大量数据以执行复杂任务。Python因其简洁性和强大的库支持成为深度学习研究的首选语言。本文概述了深度学习基础概念、核心算法、Python框架,并假设了一个包含教程、示例代码、数据集、交互式学习环境、性能评估指标和进阶主题的“deep-learning-study-main”压缩包内容,旨在帮助学习者深入理
- 深度学习基础2
TY-2025
深度学习深度学习人工智能
5.张量索引操作(1)索引操作行列索引列表索引print(data[[0,2],[1,2]])#返回(0,1),(2,2)两个位置的元素print(data[[[0],[1]],[1,2]])#返回0,1行的1,2列共4个元素范围索引print(data[:3,:2])#前3行前2列数据print(data[2:,:2])#第2行到最后的前2列数据布尔索引tensor([[0,7,6,5,9],[
- 阅读笔记(2) 单层网络:回归
a2507283885
笔记
阅读笔记(2)单层网络:回归该笔记是DataWhale组队学习计划(共度AI新圣经:深度学习基础与概念)的Task02以下内容为个人理解,可能存在不准确或疏漏之处,请以教材为主。1.从泛函视角来看线性回归还记得线性代数里学过的“基”这个概念吗?一组基向量是一组线性无关的向量,它们通过线性组合可以张成一个向量空间。也就是说,这个空间里的任意一个向量,都可以表示成这组基的线性组合。函数其实也可以看作是
- 基于通义大模型的智能客服系统构建实战:从模型微调到API部署
大熊计算机
开发实战语言模型人工智能
1引言本文将深入探讨基于通义大模型的智能客服系统构建全流程,从数据准备、模型微调、性能优化到API部署和系统集成。不同于理论概述,本文将通过实战案例、代码演示和性能数据对比,展示每个环节的技术细节与工程实践。文章面向具备Python和深度学习基础的开发者,重点解决以下核心问题:如何针对客服场景准备和优化训练数据?如何高效微调通义大模型以适配特定业务需求?如何解决大模型部署中的延迟和并发挑战?如何构
- TensorFlow:深度学习基础设施的架构哲学与工程实践革新
双囍菜菜
AI深度学习tensorflow架构
TensorFlow:深度学习基础设施的架构哲学与工程实践革新文章目录TensorFlow:深度学习基础设施的架构哲学与工程实践革新一、计算范式革命:从静态图到动态执行的深度架构剖析1.1静态计算图的编译优化体系1.2动态图模式的实现原理1.3混合执行模式的编译原理二、张量计算引擎的深度架构解析2.1运行时核心组件2.2计算图优化技术2.3分布式训练架构三、可微分编程范式的实现奥秘3.1自动微分系
- 计算机视觉与深度学习实战:以Python为工具,基于深度学习的汽车目标检测
好知识传播者
Python实例开发实战计算机视觉深度学习python基于深度学习的汽车目标检测
随着人工智能技术的飞速发展,计算机视觉与深度学习已经成为当今科技领域的热点。其中,汽车目标检测作为自动驾驶、智能交通等系统的核心技术,受到了广泛关注。本文将以Python为工具,探讨基于深度学习的汽车目标检测方法及其实战应用。一、计算机视觉与深度学习基础计算机视觉是研究如何让计算机从图像或视频中获取信息、理解内容并作出决策的科学。深度学习则是一种模拟人脑神经网络的机器学习技术,通过构建深层神经网络
- 程序员转向人工智能
CoderIsArt
机器学习与深度学习人工智能
以下是针对程序员转向人工智能(AI)领域的学习路线建议,分为基础、核心技术和进阶方向,结合你的编程背景进行优化:1.夯实基础数学基础(选择性补足,边学边用)线性代数:矩阵运算、特征值、张量(深度学习基础)概率与统计:贝叶斯定理、分布、假设检验微积分:梯度、导数(优化算法核心)优化算法:梯度下降、随机梯度下降(SGD)学习资源:3Blue1Brown(视频)、《程序员的数学》系列编程工具Python
- 深度学习基础知识总结
1.BatchNorm2d加速收敛:BatchNormalization可以使每层的输入保持较稳定的分布(接近标准正态分布),减少梯度更新时的震荡问题,从而加快模型训练速度。减轻过拟合:批归一化引入了轻微的正则化效果,因为它依赖于mini-batch中的统计信息,这种方式可以减少对单个样本的过度拟合。提高模型性能:在训练过程中,BatchNormalization通过动态调整激活值的分布,让模型更
- 大数据最新大模型学习路线与建议:掌握大模型学习路径
大模型教程
大数据学习人工智能大模型AI大模型程序员AI
1既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新第一章深度学习基础第二章智能对话系统基础第三章大模型基础第四章大模型应用实践第五章大模型实战项目第一章深度学习基础深度学习基础深度学习经典模型解
- 深度学习模型:技术演进、热点突破与未来图景
accurater
c++算法笔记深度学习
第一章深度学习模型的技术演进1.1从感知机到深度神经网络里程碑突破:AlexNet在ImageNet竞赛中实现图像分类性能飞跃,首次验证深度卷积网络(CNN)的潜力。其采用ReLU激活函数、Dropout正则化等创新,奠定现代深度学习基础架构。梯度消失的破解:LSTM网络通过门控机制实现长时序依赖建模,为自然语言处理(NLP)开辟道路,后续双向LSTM、GRU等变体持续优化记忆能力。计算范式革新:
- 我们掌握的技能与进入企业的机会
万能小贤哥
人工智能算法深度学习
深度学习:从基础到实践一、引言深度学习是机器学习的一个分支,它通过构建多层神经网络来模拟人类大脑的信息处理方式,从而实现对复杂数据的自动特征提取和模式识别。近年来,深度学习在计算机视觉、自然语言处理、语音识别等领域取得了巨大的突破,引发了全球范围内的研究和应用热潮。本文将从深度学习的基本概念出发,逐步深入到实际应用,并结合代码示例展示如何实现一个简单的深度学习模型。二、深度学习基础(一)神经网络的
- 吴恩达深度学习课程实践项目集
Kiki-2189
本文还有配套的精品资源,点击获取简介:吴恩达深度学习编程作业包含了Coursera平台课程中的实践环节,为学员提供深度学习理论与编程技能的巩固。这些作业从基础神经网络到复杂架构,涵盖深度学习的各种关键概念和技术,使用TensorFlow进行模型构建和训练,适合作为入门深度学习的资源。1.深度学习基础与理论框架在当今的人工智能领域,深度学习以其强大的模式识别能力,已经成为了众多技术革新的核心。本章将
- YOLOv7在自定义数据集上的Jupyter Notebook训练指南
t0_54program
大数据与人工智能YOLOjupyteride个人开发
在当今的计算机视觉领域,目标检测是一项至关重要的任务,而YOLO(YouOnlyLookOnce)系列算法因其高效性和准确性备受关注。本文将详细介绍如何在JupyterNotebook环境中,利用YOLOv7模型对自定义数据集进行训练。前期准备环境与基础设置:开始之前,你需要具备一定的Python编程经验和深度学习基础知识,并且拥有一台性能足够强大的机器。若没有GPU,DigitalOceanGP
- 自然语言处理 (NLP) 学习路线
我喝AD钙
我的学习笔记自然语言处理学习人工智能
自然语言处理学习路线1.基础准备(可参考mooc学习)2.学习基础NLP技术(可参考mooc学习)3.经典机器学习算法在NLP中的应用(可参考吴恩达机器学习课程)4.深度学习基础(基础参考吴恩达、工具看TF、Keras官网手册)5.深度学习在NLP中的应用(arxiv论文原文和解析博客,实战参考gitee/github)6.现代NLP模型(arxiv论文原文和解析博客,实战参考gitee/gith
- MONAI 高级开发者研究教程专栏:从精通到引领医学影像AI创新
LIUDAN'S WORLD
MONAI高级开发者研究教程专栏人工智能
专栏导语:本专栏旨在为已有深度学习基础并希望在医学影像AI领域进行深入研究的高级开发者提供一套系统性的MONAI学习与实践指南。我们将不仅仅停留在“如何使用”,更会深入探讨“为何如此设计”以及“如何扩展与创新”,助您充分利用MONAI的强大功能,引领前沿研究。第一章MONAI基石与医学影像AI生态MONAI的设计哲学与核心架构解析:不仅仅是介绍:深入探讨MONAI诞生的背景,解决了医学影像AI的哪
- 深度学习面试八股简略速览
石去皿
学习记录经验分享深度学习人工智能
在准备深度学习面试时,你可能会感到有些不知所措。毕竟,深度学习是一个庞大且不断发展的领域,涉及众多复杂的技术和概念。但别担心,本文将为你提供一份全面的指南,从基础理论到实际应用,帮助你在面试中脱颖而出。1.深度学习基础:理解核心概念1.1神经网络基础神经网络是深度学习的核心,它由许多简单的处理单元(神经元)组成,这些神经元通过权重连接在一起。每个神经元接收输入,通过一个激活函数进行处理,然后输出结
- 【第15章:量子深度学习与未来趋势—15.2 量子深度学习模型的基础理论与实现方法探索】
再见孙悟空_
#【深度学习・探索智能核心奥秘】深度学习DeepSeek人工智能计算机视觉强化学习量子计算量子深度学习
还记得《三体》中智子锁死地球科技的绝望吗?今天AI领域正面临类似的困境——GPT-4训练需要消耗1.7万个NVIDIAA100GPU运行3个月,能耗相当于300个家庭一年的用电量。更可怕的是,图像识别任务的参数空间维度每增加1级,计算量就会爆炸式增长10^8倍。这时候量子计算犹如破壁者,带着量子并行计算和指数级存储空间这两把密钥,正在打开AI的降维打击时代。一、量子深度学习基础:从量子比特到量子神
- 【深度学习基础/面试高频问题】归一化-为何BN层能帮助模型优化
无敌悦悦王
面试准备基础理论深度学习人工智能计算机视觉图像处理
深度学习基础知识为何BN能够帮助训练优化1、发现问题2、BatchNorm的性能是否源于控制内部协变量偏移?3、为什么BatchNorm有效?1)BatchNorm的平滑效果2)优化景观的探索3)BatchNorm是平滑景观的最佳(唯一?)方法吗?4、理论分析5、相关工作6、结论参考文献:1、HowDoesBatchNormalizationHelpOptimization?HowDoesBatc
- 第21节:深度学习基础-激活函数比较(ReLU, Sigmoid, Tanh)
点我头像干啥
从零开始学习深度学习图像分类实战(pytorch)深度学习算法人工智能
1.引言在深度学习领域,激活函数是神经网络中至关重要的组成部分它决定了神经元是否应该被激活以及如何将输入信号转换为输出信号激活函数为神经网络引入了非线性因素,使其能够学习并执行复杂的任务没有激活函数,无论神经网络有多少层,都只能表示线性变换,极大地限制了网络的表达能力本文将深入探讨三种最常用的激活函数:ReLU(RectifiedLinearUnit)、Sigmoid和Tanh(双曲正切函数),从
- AI Python 教程
Empty-Filled
人工智能python开发语言
AIPython教程为什么使用Python学习AI?AI之Python前提AIPython教程人工智能AI之Python-机器学习监督学习回归算法分类算法非监督学习聚类算法数据降维增强学习AI之Python-深度学习深度学习基础深度学习架构AI之Python-自然语言处理文本处理和表示文本处理文本表示词汇语义学AI之Python-计算机视觉图像处理和转换图像识别架构物体检测架构两步检测器单步检测器
- 第20节:深度学习基础-反向传播算法详解
点我头像干啥
从零开始学习深度学习图像分类实战(pytorch)深度学习神经网络人工智能机器学习
一、引言反向传播算法(Backpropagation,简称BP算法)是深度学习领域最为核心的算法之一,它为神经网络提供了一种高效计算梯度的方法,使得基于梯度的优化成为可能。自20世纪80年代被重新发现并广泛应用以来,反向传播算法已经成为训练多层神经网络的标准方法,推动了深度学习革命的发展。反向传播算法的本质是链式法则(ChainRule)在神经网络中的巧妙应用,它通过从输出层向输入层反向传播误差信
- 深度学习模型:从基础到前沿的技术解析与实践指南
爱吃青菜的大力水手
深度学习人工智能
深度学习模型全面解析文章框架,结合代码演示与图形展示,内容深入浅出:深度学习模型:从基础到前沿的技术解析与实践指南第一章深度学习基础与核心思想1.1深度学习的本质与优势表示学习理论:通过多层非线性变换自动提取数据特征,无需人工设计特征(如CNN对边缘→纹理→物体的逐层抽象)与传统机器学习的对比:以ImageNet分类为例,AlexNet将Top-5错误率从26.2%降至15.3%,证明了深度学习的
- PyTorch深度学习基础/Logistic回归
Zeal Just Hurries
深度学习人工智能机器学习pytorch回归python
一、PyTorch深度学习基础1、Tensor对象及其运算Tensor对象是一个多维的数据结构,用于存储数值型数据,通常用在深度学习中进行各种计算。Tensor对象可以简单理解为一个高维数组,它是矩阵概念的扩展。在深度学习领域,特别是在使用某些框架如PyTorch或TensorFlow时,Tensor扮演着核心角色。它们不仅拥有丰富的数学属性,还内置了一些专为深度学习设计的运算,这使得Tensor
- 探索人工智能在医疗诊断中的前沿应用:深度学习助力精准医疗
Thanks_ks
IT洞察集深度学习医疗诊断医学影像识别基因组学智能辅助诊断精准医疗个性化治疗
目录引言一、深度学习基础与医疗诊断的融合1.深度学习的自适应学习能力2.特征提取的自动化与高效性3.多模态数据的融合处理4.实时诊断与远程医疗的潜力5.个性化医疗的推动二、深度学习在医学影像识别中的应用1.肿瘤检测与分类2.眼科疾病筛查3.病变识别4.脑部疾病诊断5.骨折检测与评估6.多模态影像融合分析7.自动化报告生成三、深度学习在基因组学中的应用1.精准遗传病诊断2.疾病风险预测与预防3.精准
- 深度学习基础知识-全连接层
Jul.01
深度学习人工智能神经网络
全连接(FullyConnected,简称FC)层是深度学习神经网络中一种基本的层结构。它主要用于神经网络的最后几层,将高层特征映射到输出空间中。全连接层对数据的每个输入节点与每个输出节点进行连接,用于实现输入特征和输出结果之间的映射关系。以下是对全连接层的详细解释。1.全连接层的结构和原理在全连接层中,每一个输入节点与每一个输出节点之间都有一条连接线。假设输入层有n个神经元,输出层有m个神经元,
- 深度学习基础:从入门到理解核心概念
巷955
深度学习人工智能
引言近年来,深度学习(DeepLearning)已成为人工智能领域最热门的研究方向之一。从AlphaGo战胜人类围棋冠军,到ChatGPT等大型语言模型的惊艳表现,深度学习技术正在深刻改变我们的生活和工作方式。本文将系统介绍深度学习的基础知识,帮助初学者建立对这一领域的全面认识。一、什么是深度学习?深度学习是机器学习的一个子领域,它通过模拟人脑神经元的工作方式,构建多层的神经网络模型,从数据中自动
- 深度学习基础原理知识整理
MayByte
深度学习深度学习人工智能
深度学习基础原理知识整理线性回归模型线性回归模型定义假设给定数据集(D={(x1,y1),(x2,y2),…,(xm,ym)}),其中xi=(xi1;xi2;…;xid),xi∈Rx~i~\in\mathbb{R}xi∈R。线性回归就是试图学得一个线性模型,尽可能准确地预测实际输出值。通俗地讲,即求属性与结果之间的线性关系。线性回归模型的函数表达式为:f(x)=w1x1+w2x2+⋯+wnxn+b
- 人脸识别:基于深度学习的人脸识别_(2).深度学习基础
zhubeibei168
检验检测&人脸识别深度学习人工智能开源计算机视觉人脸识别
深度学习基础引言深度学习是机器学习的一个分支,它通过构建多层神经网络来模拟人脑的结构和功能,从而实现对复杂数据模式的自动学习和识别。在计算机视觉领域,深度学习已经取得了显著的成果,尤其是在人脸识别方面。本节将介绍深度学习的基本概念、常用算法和框架,为后续的人脸识别技术打下坚实的基础。神经网络基础什么是神经网络神经网络是一种计算模型,它由大量的节点(或称为神经元)组成,这些节点通过连接形成一个网络。
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源