- L8打卡学习笔记
无涯学徒1998
学习笔记支持向量机
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊SVM与集成学习SVMSVM线性模型SVM非线性模型SVM常用参数集成学习随机森林导入数据查看数据信息数据分析随机森林模型预测结果结果分析个人总结SVM超平面:SVM在特征空间中寻找一个能够最大化类别间隔的超平面,称为最大间隔超平面。这个超平面就是将数据集分成不同类别的边界。支持向量:支持向量是离分隔超平面最近的样本点,它们决定了超平面的
- P5学习笔记
无涯学徒1998
pythonpytorch
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊运动鞋品牌识别设置GPU导入数据构建CNN模型编写训练函数编写测试函数设置动态学习率等间隔动态调整自定义调整多间隔调整余弦退火正式训练结果可视化使用模型进行预测个人总结设置GPUimporttorchimporttorch.nnasnnimporttorchvision.transformsastransformsimporttorchv
- 深度学习中高斯噪声:为什么以及如何使用
小白学视觉
深度学习人工智能
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达来源:DeepHubIMBA本文约1800字,建议阅读8分钟高斯噪声是深度学习中用于为输入数据或权重添加随机性的一种技术。在数学上,高斯噪声是一种通过向输入数据添加均值为零和标准差(σ)的正态分布随机值而产生的噪声。正态分布,也称为高斯分布,是一种连续概率分布,由其概率密度函数(PDF)定义:pdf(x)=(1/(σ*sqrt(
- OpenCV中添加高斯噪声到彩色图像和点云
LpmShell
opencv人工智能计算机视觉点云
在计算机视觉和图像处理中,噪声是一种常见的现象,可以对图像和点云数据产生不良影响。高斯噪声是一种常见的噪声类型,它具有正态分布的特点。在本文中,我们将使用OpenCV库来添加高斯噪声到彩色图像和点云数据,并提供相应的源代码示例。添加高斯噪声到彩色图像首先,我们将介绍如何使用OpenCV库向彩色图像添加高斯噪声。以下是添加高斯噪声的步骤:步骤1:导入必要的库importnumpyasnpimport
- 理解inode
zhanshenyn
linuxtableunixfile存储user
inode是一个重要概念,是理解Unix/Linux文件系统和硬盘储存的基础。我觉得,理解inode,不仅有助于提高系统操作水平,还有助于体会Unix设计哲学,即如何把底层的复杂性抽象成一个简单概念,从而大大简化用户接口。下面就是我的inode学习笔记,尽量保持简单。===================================理解inode作者:阮一峰一、inode是什么?理解inode
- 深度学习|表示学习|卷积神经网络|由参数共享引出的特征图|08
漂亮_大男孩
表示学习深度学习学习cnn
如是我闻:FeatureMap(特征图)的概念与ParameterSharing(参数共享)密切相关。换句话说,参数共享是生成FeatureMap的基础。FeatureMap是卷积操作的核心产物,而卷积操作的高效性正是由参数共享带来的。下面我们详细看一下FeatureMap和ParameterSharing之间的关系:1.什么是FeatureMap?定义:FeatureMap是卷积操作生成的输出结
- 探秘FreeMovie:一个开源的电影推荐系统
孟振优Harvester
探秘FreeMovie:一个开源的电影推荐系统去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于深度学习的开源电影推荐系统,由pojiezhiyuanjun开发并维护。该项目的目标是为用户提供个性化的电影推荐服务,通过机器学习算法理解用户的观影偏好,并据此进行智能推荐。技术分析FreeMovie的核心架构包括以下关键组件:数据处理-项目采用Hadoop进行大数据预处
- Topaz Video AI——视频修复
爱研究的小牛
AIGC—视频AIGC
一、TopazVideoAI介绍及使用TopazVideoAI是一款基于人工智能的视频增强和修复软件,主要用于提升视频质量、去噪、插帧和分辨率提升。它利用深度学习技术对视频进行智能化处理,使得视频看起来更加清晰和流畅。TopazVideoAI特别适合那些需要修复旧视频、提升低分辨率视频质量的用户。二、TopazVideoAI的主要功能视频去噪:通过AI模型去除视频中的噪点,使画面更加干净。分辨率提
- VxLAN 分布式对称 IRB 实验
jiecy
数通运维分布式网络运维
一、拓扑描述:CE1上的VRFA上开启用户A的vlan10、20网关,CE2的VRFA上开启用户A的vlan20、30的网关要求:全域互访二、配置思路:1、网络侧配置underlayer底层互通1)CE1、2配置IGP,让loo0互通2)CE1、2建立BGPEVPN邻居,建立EVPN路由传输通道(全局要先开启e-overlayenable)2、配置overlayer上层互通1)网络侧:a、配置BD
- 【深度学习|变化检测孪生网络】基于共享权重的双流 U-Net 变化检测网络架构,附代码(一)
努力学习的大大
深度学习基础深度学习网络架构人工智能python
【深度学习|变化检测孪生网络】基于共享权重的双流U-Net变化检测网络架构,附代码(一)【深度学习|变化检测孪生网络】基于共享权重的双流U-Net变化检测网络架构,附代码(一)文章目录【深度学习|变化检测孪生网络】基于共享权重的双流U-Net变化检测网络架构,附代码(一)基于共享权重的双流U-Net变化检测网络架构1.双流网络(SiameseNetwork)概述2.双流网络的应用——变化检测3.U
- 【深度学习|迁移学习】Wasserstein距离度量和跨域原型一致性损失(CPC Loss)如何计算?以及Wasserstein距离和CPC Loss结合的对抗训练示例,附代码(二)
努力学习的大大
深度学习基础深度学习迁移学习人工智能python
【深度学习|迁移学习】Wasserstein距离度量和跨域原型一致性损失(CPCLoss)如何计算?以及Wasserstein距离和CPCLoss结合的对抗训练示例,附代码(二)【深度学习|迁移学习】Wasserstein距离度量和跨域原型一致性损失(CPCLoss)如何计算?以及Wasserstein距离和CPCLoss结合的对抗训练示例,附代码(二)文章目录【深度学习|迁移学习】Wassers
- 激光线扫标定和相机标定:中高级C++程序员与计算机视觉工程师的指南
m0_57781768
数码相机c++计算机视觉
激光线扫标定和相机标定:中高级C++程序员与计算机视觉工程师的指南简介在计算机视觉和机器人领域,激光标定和相机标定是实现高精度测量和检测的关键技术。激光线扫标定和相机标定在许多应用中都是必不可少的,如自动驾驶、工业检测、三维重建等。本文将详细介绍激光线扫标定和相机标定的基本概念、实现细节以及常见问题的解决方案。目标读者为中高级C++程序员和计算机视觉工程师,文章将提供详细的技术细节和代码示例,确保
- Mysql事务隔离级别及其底层原理
阿狸远翔
mysql数据库
理解事务隔离级别MySQL是一种常用的关系型数据库管理系统,它支持事务的概念和隔离级别。事务隔离级别是指在并发环境下,数据库系统如何处理不同事务之间的相互干扰和冲突。MySQL提供了四种事务隔离级别,分别是读未提交(ReadUncommitted)、读已提交(ReadCommitted)、可重复读(RepeatableRead)和串行化(Serializable)。每种隔离级别都有不同的特点和适用
- 基于ROS的相机和激光雷达离线自动标定
AUBarryRobot
传感器标定数码相机
目录前言理论背景相机和激光雷达标定原理实现思路Reference前言因为本人实际工作中在做视觉和雷达的相关融合工作,所以相机和雷达的传感器之间的位姿RT矩阵则是要首先进行解决的。标定对大部分人来说都很头疼,抵触,在网上进行调研也没有什么太好的方法,或者别人分享的项目和自己的相差很大,根本不适用或者不好复现。而且可能全程比较繁琐,需要手动进行各种操作,运行一大堆程序。我的联合标定程序,只需要采集对应
- QT 笔记
繁缕怀夕
QT笔记
本文详述了QT的基础应用,其中包括基础控件应用、多线程等工具类使用、以及显示2D、3D图像等功能,适用于C++和计算机视觉领域的开发者。1、基础控件QLineEditQComboBoxQMenuQToolBar2、基础功能2.1、多线程线程QThread2.2、多语言静态显示动态切换3、QChart4、QGraphicsView5、PCL之VTK
- Python全网最全基础课程笔记(十三)——作用域,跟着思维导图和图文来学习,爆肝2w字,无数代码案例!
长风清留扬
最新Python入门基础合集python笔记学习作用域面试跳槽改行学it
本专栏系列为Pythong基础系列,每篇内容非常全面,包含全网各个知识点,非常长,请耐心看完。每天都会更新新的内容,搜罗全网资源以及自己在学习和工作过程中的一些总结,可以说是非常详细和全面。以至于为什么要写的这么详细:自己也是学过Python的,很多新手只是简单的过一篇语法,其实对于一个知识点的底层逻辑和其他使用方法以及参数详情根本不是很了解,这就导致学完很容易忘记,而且在实战过程中也是半知半解,
- Python全网最全基础课程笔记(三)——所有运算符+运算符优先级
长风清留扬
最新Python入门基础合集开发语言python运算符Python基础numpypandaspip
本专栏系列为Pythong基础系列,每天都会更新新的内容,搜罗全网资源以及自己在学习和工作过程中的一些总结,可以说是非常详细和全面。以至于为什么要写的这么详细:自己也是学过Python的,很多新手只是简单的过一篇语法,其实对于一个知识点的底层逻辑和其他使用方法以及参数详情根本不是很了解,这就导致学完很容易忘记,而且在实战过程中也是半知半解,所以自己就尽量写的详细些,让需要的人能更了解Python的
- 2025数学建模美赛B题完整建模思路——管理可持续旅游业
鹿鹿数模
数学建模
2025MCM问题B:管理可持续旅游业以下是我们对该题目的赛题分析,由于完整内容过长,因此在此处放出部分内容,欢迎从文末小卡片处加群获取。赛题分析以下内容包括三个主要部分:(1)题目的中文翻译(2)对题目的整体分析与思路综述(3)对题目要求的逐项详细分析与求解思路。本文的撰写将综合运用多元的数学模型、算法以及机器学习/深度学习的方法,并在必要时给出题外假设与可行的创新性思路,以期为参赛者提供较为系
- 使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统 yolov8来训练无人机数据集并检测无人机
QQ_767172261
无人及视角YOLO无人机深度学习
使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统yolov8来训练无人机数据集并检测无人机无人机数据集,yolo格式种类为uav,一共近5w张图片,如何用yolov8代码训练无人机检测数据集文章目录以下文章及内容仅供参考。1.环境部署2.数据预处理数据集准备划分数据集3.模型定义4.训练模型5.评估模型6.结果分析与可视化7.集成与部署PyQt6GUI(`
- Python实现SMTP自动发邮件全流程指南
福建低调
本文还有配套的精品资源,点击获取简介:SMTP是互联网用于发送电子邮件的标准协议,Python提供便利的库来实现这一功能。本文将介绍如何利用Python的smtplib和email.mime库通过SMTP自动发送邮件,包括设置服务器、登录验证、构建邮件对象、发送邮件,并提供了一个代码示例。文章还强调安全性和常见问题的解决方案,为初学者提供详细步骤和视觉辅助。1.SMTP协议基础在互联网技术飞速发展
- Apache Flink 替换 Spark Stream的架构与实践( bilibili 案例解读)_streamsparkflink加载udf
2501_90243308
apacheflinkspark
3.基于ApacheFlink的流式计算平台为解决上述问题,bilibili希望根据以下三点要求构建基于ApacheFlink的流式计算平台。第一点,需要提供SQL化编程。bilibili对SQL进行了扩展,称为BSQL。BSQL扩展了Flink底层SQL的上层,即SQL语法层。**第二点,**DAG拖拽编程,一方面用户可以通过画板来构建自己的Pipeline,另一方面用户也可以使用原生Jar方式
- AlphaFold2的思路总结(十五)
xiaofengzihhh
蛋白质结构预测深度学习人工智能神经网络
2021SC@SDUSC这学期的代码分析工作接近尾声了,我想简单总结一下AlphaFold2的总体思路 具体来看,AlphaFold2主要利用多序列比对(MSA),把蛋白质的结构和生物信息整合到了深度学习算法中。它主要包括两个部分:神经网络EvoFormer和结构模块(Structuremodule)。一、EvoFormer 在EvoFormer中,主要是将图网络(Graphnetworks)
- python机器学习
方安乐
pythonpython机器学习人工智能
Python机器学习是当前最为热门的机器学习领域之一,其简洁、易用、高效的特点,让越来越多的开发者开始探索其应用。本文将从以下几个方面介绍Python机器学习的基础知识和实践案例,帮助读者更好地理解和应用机器学习技术。前提Python机器学习的应用领域A.图像识别和计算机视觉B.自然语言处理和文本分析C.数据挖掘和推荐系统深度学习A.神经网络的基本原理B.常用的深度学习框架和算法C.深度学习在图像
- 基于深度学习的舆论分析与检测系统应用与研究
计算机软件程序设计
机器学习深度学习人工智能舆论检测
【1】系统介绍研究背景随着互联网技术的迅猛发展和社会媒体平台的普及,信息传播的速度和范围达到了前所未有的水平。这一变化不仅极大地丰富了人们的社交生活,也为社会科学研究提供了新的视角和工具。舆论分析作为社会科学研究的一个重要分支,其目的是通过收集和分析网络上的公众意见和情感倾向,来了解人们对特定事件或话题的看法和态度。近年来,基于深度学习的自然语言处理技术取得了显著进步,这为提高舆论分析的准确性和效
- 深度学习利用数据加载、预处理和增强数据提高模型的性能
weixin_30777913
人工智能深度学习
深度学习数据预处理是一个关键步骤,旨在提高模型的性能和准确性。通过数据加载、预处理和增强,可以显著提高深度学习模型的性能和准确性。在实际应用中,需要根据具体的数据和任务来选择合适的预处理和增强技术。以下将详细论述并举例说明如何加载、预处理和增强数据。一、数据加载在深度学习中,数据加载是第一步。这通常涉及到从各种数据源(如CSV文件、数据库、图像文件夹等)中读取数据。以DeepLearning4J(
- 【深度学习】搭建PyTorch神经网络进行气温预测
睡不着还睡不醒
深度学习深度学习pytorch神经网络
第一步数据加载与观察①导包importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimporttorchimporttorch.optimasoptimimportwarningswarnings.filterwarnings("ignore")%matplotlibinline②加载数据features=pd.read_csv("te
- HTML&CSS :如此优雅丝滑的导航栏,你不看看吗?
前端Hardy
CSShtmlcss前端javascript
这段代码创建了一个动态的导航栏,通过CSS技术实现了按钮的激活和悬停效果,以及动态背景效果,为页面添加了视觉吸引力和用户交互体验。大家复制代码时,可能会因格式转换出现错乱,导致样式失效。建议先少量复制代码进行测试,若未能解决问题,私信我,我会发送完整的压缩包给你演示效果HTML&CSS公众号关注:前端Hardybody{margin:0;padding:0;background-color:#07
- 浅谈redis
zhaoyang9999
redisredis数据库java
redis谈谈你对redis的理解非关系数据库他是单线程的:数据放在内存中,单线程操作效率高(多线程会造成CPU的上下文切换)基于内存操作(周期性的把更新的数据写入到磁盘(RDB)或者把修改操作写入追加的文件记录(AOF))五大基本数据类型strng(最常用)list(列表)底层链表可以用来消息订阅set(集合)hash(哈希hsetkeyfieldvalue)map集合更适合对象的存储Zset(
- PointNet++改进策略 :模块改进 | OA-CNNs | , 全自适应3D稀疏卷积神经网络(OA-CNNs),超越基于Transformer的模型,同时显著降低计算和内存成本
我是瓦力
PointNet++改进策略3dtransformer深度学习计算机视觉人工智能神经网络
目录介绍核心思想及其实现引入空间自适应感受野自适应关系卷积(ARConv)网络整体架构设计训练和验证实验与评估如何改进PointNet++引入空间自适应感受野引入自适应关系学习利用自适应聚合器论文题目:OA-CNNs:Omni-AdaptiveSparseCNNsfor3DSemanticSegmentation发布期刊:CVPR2024作者地址:1香港中文大学2香港大学3香港中文大学,深圳4HI
- 深度学习-97-大语言模型LLM之基于langchain的实体记忆和知识图谱记忆
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1内存记忆Memory1.1记忆系统支持的操作1.2记忆的存储1.3记忆的查询2记忆的应用2.1设置环境变量2.2ConversationEntityMemory实体记忆2.3ConversationKGMemory知识图谱记忆2.3.1创建ConversationKGMemory2.3.2创建ConversationChain2.4ConversationBufferWindowMemo
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那