CVPR2021|底层视觉(超分辨率,图像恢复,去雨,去雾,去模糊,去噪等)相关论文汇总(附论文链接/开源代码/解析)【持续更新】

CVPR2021|底层视觉相关论文汇总(如果觉得有帮助,欢迎点赞和收藏)

  • 1.超分辨率(Super-Resolution)
      • Unsupervised Degradation Representation Learning for Blind Super-Resolution
      • Data-Free Knowledge Distillation For Image Super-Resolution
      • AdderSR: Towards Energy Efficient Image Super-Resolution
      • Exploring Sparsity in Image Super-Resolution for Efficient Inference
      • ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic
      • Cross-MPI: Cross-scale Stereo for Image Super-Resolution using Multiplane Images
      • LAU-Net: Latitude Adaptive Upscaling Network for Omnidirectional Image Super-resolution
      • Learning Continuous Image Representation with Local Implicit Image Function
      • Temporal Modulation Network for Controllable Space-Time Video Super-Resolution
      • Robust Reference-based Super-Resolution via C²-Matching
      • GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution
      • BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond
      • Video Rescaling Networks with Joint Optimization Strategies for Downscaling and Upscaling
  • 2.图像去雨(Image Deraining)
      • Removing Raindrops and Rain Streaks in One Go
      • From Rain Generation to Rain Removal
      • Semi-Supervised Video Deraining Embedded with Dynamical Rain Generator
      • Closing the Loop: Joint Rain Generation and Removal via Disentangled Image Translation
  • 3.图像去雾(Image Dehazing)
      • Learning to Restore Hazy Video: A New Real-World Dataset and A New Method
      • ContrastiveLearning for Compact Single Image Dehazing
  • 4.去模糊(Deblurring)
      • DeFMO: Deblurring and Shape Recovery of Fast Moving Objects
      • ARVo: Learning All-Range Volumetric Correspondence for Video Deblurring
  • 5.去噪(Denoising)
      • Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images
  • 6.图像恢复(Image Restoration)
      • Multi-Stage Progressive Image Restoration
      • CT Film Recovery via Disentangling Geometric Deformation and Illumination Variation: Simulated Datasets and Deep Models
      • Restoring Extremely Dark Images in Real Time
      • Dual Pixel Exploration: Simultaneous Depth Estimation and Image Restoration
      • Progressive Semantic-Aware Style Transformation for Blind Face Restoration
  • 7.图像增强(Image Enhancement)
      • Auto-Exposure Fusion for Single-Image Shadow Removal
      • Learning Multi-Scale Photo Exposure Correction
      • Robust Reflection Removal with Reflection-free Flash-only Cues
  • 8.图像去摩尔纹(Image Demoireing)
  • 9.图像修复(Inpainting)
      • PD-GAN:Probabilistic Diverse GAN for Image Inpainting
      • Generating Diverse Structure for Image Inpainting with Hierarchical VQ-VAE
  • 10.图像质量评价(Image Quality Assessment)
      • SDD-FIQA:Unsupervised Face Image Quality Assessment with Similarity DistributionDistance
  • 11.插帧(Frame Interpolation)
      • FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation
      • CDFI: Compression-driven Network Design for Frame Interpolation
      • DeFMO: Deblurring and Shape Recovery of Fast Moving Objects
  • 12.视频压缩(Video Compression)
      • MetaSCI: Scalable and Adaptive Reconstruction for Video Compressive Sensing
  • 13.其他多任务
      • Pre-Trained Image Processing Transformer
      • Invertible Image Signal Processing
  • 参考
  • 相关Low-Level-Vision整理

Awesome-CVPR2021-Low-Level-Vision((持续更新,3月22日新增1篇恢复1其他;3月21日新增1篇超分1去雨;3月16日新增1篇去噪;3月13日新增1篇:1inpaiting;3月11日新增7篇:1质量评估2去雾4超分1增强;3月9日新增2篇去雨;3月8日新增2篇:2图像恢复;3月7日新增3篇:1去雨1去模糊1超分;3月6日新增2篇:1超分1inpainting)
整理了下2021年CVPR图像重建/底层视觉(Low-Level Vision)相关的一些论文,包括超分辨率,图像恢复,去雨,去雾,去模糊,去噪等方向。大家如果觉得有帮助,欢迎点赞和收藏~~
优先在Github更新:Awesome-CVPR2021-Low-Level-Vision,欢迎star~
知乎:https://zhuanlan.zhihu.com/p/354662001
CVPR2021官网:http://cvpr2021.thecvf.com
开会时间:2021年6月19日-6月25日
论文接收公布时间:2021年2月28日

1.超分辨率(Super-Resolution)

Unsupervised Degradation Representation Learning for Blind Super-Resolution

  • Paper:
  • Code:https://github.com/LongguangWang/DASR
  • Analysis:

Data-Free Knowledge Distillation For Image Super-Resolution

AdderSR: Towards Energy Efficient Image Super-Resolution

  • Paper:https://arxiv.org/abs/2009.08891
  • Code:

Exploring Sparsity in Image Super-Resolution for Efficient Inference

  • Paper:https://arxiv.org/abs/2006.09603
  • Code:https://github.com/LongguangWang/SMSR

ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

  • Paper:https://arxiv.org/abs/2103.04039
  • Code:https://github.com/Xiangtaokong/ClassSR

Cross-MPI: Cross-scale Stereo for Image Super-Resolution using Multiplane Images

  • Paper:https://arxiv.org/abs/2011.14631
  • Code:
  • Homepage:http://www.liuyebin.com/crossMPI/crossMPI.html
  • Analysis:CVPR 2021,Cross-MPI以底层场景结构为线索的端到端网络,在大分辨率(x8)差距下也可完成高保真的超分辨率

LAU-Net: Latitude Adaptive Upscaling Network for Omnidirectional Image Super-resolution

  • Code:https://github.com/wangh-allen/LAU-Net

Learning Continuous Image Representation with Local Implicit Image Function

  • Paper:https://arxiv.org/abs/2012.09161
  • Code:https://github.com/yinboc/liif
  • Homepage:https://yinboc.github.io/liif/

Temporal Modulation Network for Controllable Space-Time Video Super-Resolution

Robust Reference-based Super-Resolution via C²-Matching

GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution

  • Paper:https://ckkelvinchan.github.io/papers/glean.pdf
  • Code:
  • Homepage:https://ckkelvinchan.github.io/projects/GLEAN/

BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

  • Paper:https://arxiv.org/abs/2012.02181
  • Code:https://github.com/ckkelvinchan/BasicVSR-IconVSR
  • Homepage:https://ckkelvinchan.github.io/projects/BasicVSR/

Video Rescaling Networks with Joint Optimization Strategies for Downscaling and Upscaling

  • Paper:
  • Code:https://github.com/ding3820/MIMO-VRN
  • Homepage:https://ding3820.github.io/MIMO-VRN/

2.图像去雨(Image Deraining)

Removing Raindrops and Rain Streaks in One Go

From Rain Generation to Rain Removal

Semi-Supervised Video Deraining Embedded with Dynamical Rain Generator

  • Paper:https://arxiv.org/abs/2103.07939
  • Code:https://github.com/zsyOAOA/S2VD

Closing the Loop: Joint Rain Generation and Removal via Disentangled Image Translation

  • Code:https://github.com/guyii54/JRGR

3.图像去雾(Image Dehazing)

Learning to Restore Hazy Video: A New Real-World Dataset and A New Method

ContrastiveLearning for Compact Single Image Dehazing

  • Code:https://github.com/GlassyWu/AECR-Net

4.去模糊(Deblurring)

DeFMO: Deblurring and Shape Recovery of Fast Moving Objects

  • Paper:https://arxiv.org/abs/2012.00595
  • Code:https://github.com/rozumden/DeFMO

ARVo: Learning All-Range Volumetric Correspondence for Video Deblurring

5.去噪(Denoising)

Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images

  • Paper:https://arxiv.org/abs/2101.02824

6.图像恢复(Image Restoration)

Multi-Stage Progressive Image Restoration

  • Paper:https://arxiv.org/abs/2102.02808
  • Code:https://github.com/swz30/MPRNet
  • Analysis:

CT Film Recovery via Disentangling Geometric Deformation and Illumination Variation: Simulated Datasets and Deep Models

  • Paper:https://arxiv.org/abs/2012.09491
  • Code:https://github.com/transcendentsky/Film-Recovery

Restoring Extremely Dark Images in Real Time

  • Code:https://github.com/MohitLamba94/Restoring-Extremely-Dark-Images-In-Real-Time

Dual Pixel Exploration: Simultaneous Depth Estimation and Image Restoration

  • Paper:https://arxiv.org/abs/2012.00301
  • Code:https://github.com/panpanfei/Dual-Pixel-Exploration-Simultaneous-Depth-Estimation-and-Image-Restoration

Progressive Semantic-Aware Style Transformation for Blind Face Restoration

  • Paper:https://arxiv.org/abs/2009.08709
  • Code:https://github.com/chaofengc/PSFRGAN

7.图像增强(Image Enhancement)

Auto-Exposure Fusion for Single-Image Shadow Removal

  • Paper:https://arxiv.org/abs/2103.01255
  • Code:https://github.com/tsingqguo/exposure-fusion-shadow-removal

Learning Multi-Scale Photo Exposure Correction

  • Paper:https://arxiv.org/abs/2003.11596
  • Code:https://github.com/mahmoudnafifi/Exposure_Correction

Robust Reflection Removal with Reflection-free Flash-only Cues

  • Paper:https://arxiv.org/abs/2103.04273
  • Code:https://github.com/ChenyangLEI/flash-reflection-removal

8.图像去摩尔纹(Image Demoireing)

9.图像修复(Inpainting)

PD-GAN:Probabilistic Diverse GAN for Image Inpainting

  • Code:https://github.com/KumapowerLIU/PD-GAN

Generating Diverse Structure for Image Inpainting with Hierarchical VQ-VAE

  • Paper:https://arxiv.org/abs/2103.10022
  • Code:https://github.com/USTC-JialunPeng/Diverse-Structure-Inpainting

10.图像质量评价(Image Quality Assessment)

SDD-FIQA:Unsupervised Face Image Quality Assessment with Similarity DistributionDistance

  • Paper:https://arxiv.org/abs/2103.05977

11.插帧(Frame Interpolation)

FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation

  • Paper:https://arxiv.org/abs/2012.08512
  • Code:https://tarun005.github.io/FLAVR/Code
  • Homepage:https://tarun005.github.io/FLAVR/

CDFI: Compression-driven Network Design for Frame Interpolation

  • Paper:https://arxiv.org/abs/2103.10559
  • Code:https://github.com/tding1/Compression-Driven-Frame-Interpolation

DeFMO: Deblurring and Shape Recovery of Fast Moving Objects

  • Paper:hhttps://arxiv.org/abs/2012.00595
  • Code:https://github.com/rozumden/DeFMO

12.视频压缩(Video Compression)

MetaSCI: Scalable and Adaptive Reconstruction for Video Compressive Sensing

  • Paper:https://arxiv.org/abs/2103.01786
  • Code:https://github.com/xyvirtualgroup/MetaSCI-CVPR2021

13.其他多任务

Pre-Trained Image Processing Transformer

  • Paper:https://arxiv.org/abs/2012.00364
  • Code:
  • Analysis:CVPR 2021 | Transformer进军low-level视觉!北大华为等提出预训练模型IPT

Invertible Image Signal Processing

  • Code:https://github.com/yzxing87/Invertible-ISP

持续更新~

参考

[1] CVPR 2021 结果出炉!最新71篇CVPR’21论文汇总(更新中)
[2] CVPR2021最新信息及已接收论文/代码(持续更新)
[3] 15分钟看完:悉尼科技大学入选 CVPR 2021 的 13 篇论文,都研究什么?
[4] CVPR 2021放榜,腾讯优图20篇论文都在这里了

相关Low-Level-Vision整理

  • Awesome-CVPR2020-Low-Level-Vision
  • Awesome-ECCV2020-Low-Level-Vision

你可能感兴趣的:(图像处理与计算机视觉,论文相关,CVPR,底层视觉,lowlevelvision,超分辨率,深度学习)