pytorch-CNN详细基础教程

CNN基本步骤

1.读取数据

2.创建数据加载器

3.定义模型

4.训练模型

5.测试模型

import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision      # 数据库模块

#1读取数据

# Mnist 手写数字
train_data = torchvision.datasets.MNIST(
    root='./mnist/',    # 保存或者提取位置
    train=True,  # this is training data
    transform=torchvision.transforms.ToTensor(),    # 转换 PIL.Image or numpy.ndarray 成
                                                    # torch.FloatTensor (C x H x W), 训练的时候 normalize 成 [0.0, 1.0] 区间
    download=True,          # 没下载就下载, 下载了就不用再下了
)

test_data = torchvision.datasets.MNIST(
    root='./mnist/',    # 保存或者提取位置
    train=False,  # this is test data
    transform=torchvision.transforms.ToTensor(),    
    download=True,          # 没下载就下载, 下载了就不用再下了
)

#2创建数据加载器
train_loader = Data.DataLoader(dataset=train_data, batch_size=64, shuffle=True)

test_loader = Data.DataLoader(dataset=test_data, batch_size=64, shuffle=True)

for x,y in test_loader:
    print(x.shape)
    print(y.shape,y.dtype)
    break



#3定义模型
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Sequential(  # input shape (1, 28, 28)
            nn.Conv2d(
                in_channels=1,      # input height
                out_channels=16,    # n_filters
                kernel_size=5,      # filter size
                stride=1,           # filter movement/step
                padding=2,      # 如果想要 con2d 出来的图片长宽没有变化, padding=(kernel_size-1)/2 当 stride=1
            ),      # output shape (16, 28, 28)
            nn.ReLU(),    # activation
            nn.MaxPool2d(kernel_size=2),    # 在 2x2 空间里向下采样, output shape (16, 14, 14)
        )
        self.conv2 = nn.Sequential(  # input shape (16, 14, 14)
            nn.Conv2d(16, 32, 5, 1, 2),  # output shape (32, 14, 14)
            nn.ReLU(),  # activation
            nn.MaxPool2d(2),  # output shape (32, 7, 7)
        )
        self.out = nn.Linear(32 * 7 * 7, 10)   # fully connected layer, output 10 classes

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size(0), -1)   # 展平多维的卷积图成 (batch_size, 32 * 7 * 7)
        output = self.out(x)
        return output
cnn=CNN()
device="cuda" if torch.cuda.is_available() else "cpu"
print("using {}".format(device))
cnn.to(device)
#优化器和损失函数
optimizer = torch.optim.Adam(cnn.parameters(), lr=0.001)   # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss()   # the target label is not one-hotted

#4训练模型
def train(dataloader,model,loss_fu,optimizer):
    for epoch in range(5):
        for batch,(x,y) in enumerate(dataloader):
            x,y=x.to(device),y.to(device)
            pred=model(x)
            loss=loss_fu(pred,y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print("train_loss:%f"%loss.item())
train(train_loader,cnn,loss_func,optimizer)
#5测试模型

def test(dataloader,model):
    size=len(dataloader.dataset)
    model.eval()
    test_loss,correct=0,0
    with torch.no_grad():
        for x,y in dataloader:
            x,y=x.to(device),y.to(device)
            pred=model(x)
            test_loss+=loss_func(pred,y).item()
            correct+=(pred.argmax(1)==y).type(torch.float).sum().item()
        test_loss/=size
        correct/=size
        print("test_loss:%f,准确率:%f "%(test_loss,correct*100))
test(test_loader,cnn)

 

你可能感兴趣的:(pytorch,python)