可迭代对象(iterable):是指该对象可以被用于for…in…循环,例如:集合,列表,元祖,字典,字符串,迭代器等。
from collections.abc import Iterable
a: int = 1
print(isinstance(a, Iterable)) # False
b: str = "lalalalala"
print(isinstance(b, Iterable)) # True
c: set = set([1, 2])
print(isinstance(c, Iterable)) # True
我们也可以自己实现__iter__来将一个类实例对象变为可迭代对象:
class MyIterable:
def __iter__(self):
pass
print(isinstance(MyIterable(), Iterable)) # True
迭代器:对可迭代对象进行迭代的方式或容器,并且需要记录当前迭代进行到的位置。
from collections.abc import Iterator, Iterable
class MyIterator:
def __init__(self, array_list):
self.array_list = array_list
self.index = 0
def __iter__(self):
return self
def __next__(self):
if self.index < len(self.array_list):
val = self.array_list[self.index]
self.index += 1
return val
else:
raise StopIteration
# 父类如果是迭代器,子类也将是迭代器
class MySubIterator(MyIterator):
def __init__(self):
pass
myIterator = MyIterator([1, 2, 3, 4])
# 判断是否为可迭代对象
print(isinstance(myIterator, Iterable)) # True
# 判断是否为迭代器
print(isinstance(myIterator, Iterator)) # True
# 子类实例化
mySubIterator = MySubIterator()
print(isinstance(mySubIterator, Iterator)) # True
# 进行迭代
print(next(myIterator)) # 1
print(next(myIterator)) # 2
print(next(myIterator)) # 3
print(next(myIterator)) # 4
print(next(myIterator)) # raise StopIteration
迭代器优缺点:
- 优点:迭代器对象表示的是一个数据流,可以在需要时才去调用next来获取一个值;因而本身在内存中始终只保留一个值,对于内存占用小可以存放无限数据流。优于其他容器需要一次将所有元素都存放进内存,如:列表、集合、字典...等
- 缺点:1.无法获取存放的元素长度,除非取完计数。2.只能向后取值,next()永远返回的是下一个值。取值不灵活,无法取出指定值(无法像字典的key,或列表的下标),而且迭代器的生命周期是一次性的元素被迭代完则生命周期结束
# 列表生成式
_list = [i for i in range(10)]
print(type(_list)) #
print(_list) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# 生成器
_generator = (i for i in range(10))
print(type(_generator)) #
print(_generator) # at 0x7fbcd92c9ba0>
# 生成器对象取值
print(_generator.__next__()) # 0
print(next(_generator)) # 1
# 注意从第三个元素开始了!
for x in _generator:
print(x) # 2,3,4,5,6,7,8,9
因为生成器对象也有迭代器的特性,所以元素迭代完后继续调用next()方法则会引发StopIteration。
def gen_generator():
yield 1
def generator():
return 1
print(gen_generator(), type(gen_generator()))
#
print(generator(), type(generator()))
# 1
他与普通函数返回值有所不同,普通函数运行到return语句则直接返回代码不再执行;而生成器对象会运行到yield后返回,再下次调用时从yield语句后继续执行。如:
注意:yield 一次只会返回一个元素,即使返回的元素是个可迭代对象,也是一次性返回
def gen_generator2():
yield [1, 2, 3]
s = gen_generator2()
print(next(s)) # [1, 2, 3]
def consumer():
r = ''
while True:
n = yield r
if not n:
return
print(f'[CONSUMER] Consuming get params.. ({
n})')
if n == 3:
r = '500 Error'
else:
r = '200 OK'
def produce(c):
c.send(None) # 启动生成器
n = 0
while n < 5:
n = n + 1
print(f'[PRODUCER] Producing with params.. ({
n})')
r = c.send(n) # 一旦n有值,则切换到consumer执行
print(f'[PRODUCER] Consumer return : [{
r}]')
if not r.startswith('200'):
print("消费者返回服务异常,则结束生产,并关闭消费者")
c.close() # 关闭生成器
break
consume = consumer()
produce(consume)
# [PRODUCER] Producing with params.. (1)
# [CONSUMER] Consuming get params.. (1)
# [PRODUCER] Consumer return : [200 OK]
# [PRODUCER] Producing with params.. (2)
# [CONSUMER] Consuming get params.. (2)
# [PRODUCER] Consumer return : [200 OK]
# [PRODUCER] Producing with params.. (3)
# [CONSUMER] Consuming get params.. (3)
# [PRODUCER] Consumer return : [500 Error]
# 消费者返回服务异常,则结束生产,并关闭消费者
def my_generator(n, end_case):
for i in range(n):
if i == end_case:
return f'当 i==`{
i}`时,中断程序。'
else:
yield i
g = my_generator(5, 2) # 调用
for _i in g: # for循环不会显式触发异常,故而无法获取到return的值
print(_i)
# 输出:
# 0
# 1
从上面的例子可以看出,for迭代语句不会显式触发异常,故而无法获取到return的值,迭代到2的时候遇到return语句,隐式的触发了StopIteration异常,就终止迭代了,但是在程序中不会显示出来。
可以通过next()显示的触发StopIteration异常来获取返回值:
def my_generator2(n, end_case):
for i in range(n):
if i == end_case:
return f'当 i==`{
i}`时,中断程序。'
else:
yield i
g = my_generator2(5, 2) # 调用
try:
print(next(g)) # 0
print(next(g)) # 1
print(next(g)) # 此处要触发end_case了
except StopIteration as exc:
print(exc.value) # 当 i==`2`时,中断程序。
使用yield from 可以简化成:
def my_generator3(n, end_case):
for i in range(n):
if i == end_case:
return f'当 i==`{
i}`时,中断程序。'
else:
yield i
def wrap_my_generator(generator): # 将my_generator的返回值包装成一个生成器
result = yield from generator
yield result
g = my_generator3(5, 2) # 调用
for _ in wrap_my_generator(g):
print(_)
# 输出:
# 0
# 1
# 当 i==`2`时,中断程序。
yield from 有以下几个概念名词:
1、调用方:调用委派生成器的客户端(调用方)代码(上文中的wrap_my_generator(g))
2、委托生成器:包含yield from表达式的生成器函数(包装),作用就是提供一个数据传输的管道(上文中的wrap_my_generator)
3、子生成器:yield from后面加的生成器函数(上文中的my_generator)
调用方是通过这个 “包装函数” 来与生成器进行交互的,即“调用方——>委托生成器——>生成器函数”
下面有个例子帮助大家理解(该参考于博客):
# 子生成器
def average_gen():
total = 0
count = 0
average = 0
while True:
new_num = yield average
if new_num is None:
break
count += 1
total += new_num
average = total / count
# 每一次return,都意味着当前协程结束。
return total, count, average
# 委托生成器
def proxy_gen():
while True:
# 只有子生成器要结束(return)了,yield from左边的变量才会被赋值,后面的代码才会执行。
total, count, average = yield from average_gen()
print("总共传入 {} 个数值, 总和:{},平均数:{}".format(count, total, average))
# 调用方
def main():
calc_average = proxy_gen()
next(calc_average) # 激活协程
calc_average.send(10) # 传入:10
calc_average.send(None) # 结束协程
print("================== 重开协程 ===================")
calc_average.send(20) # 传入:20
calc_average.send(30) # 传入:30
calc_average.send(None) # 结束协程
if __name__ == '__main__':
main()
# 输出:
# 总共传入 1 个数值, 总和:10,平均数:10.0
# ================== 重开协程 ===================
# 总共传入 2 个数值, 总和:50,平均数:25.0
def func(): # 函数名仅仅只是个绑定内存地址的变量
print("i`m running")
# 这是调用
func() # i`m running
# 这是对象引用,引用的是内存地址
func2 = func
print(func2 is func) # True
# 通过引用进行调用
func2() # i`m running
def out_func():
out_a = 10
def inner_func(inner_x):
return out_a + inner_x
return inner_func
out = out_func()
print(out) # .inner_func at 0x7ff378af5c10> out_func返回的是inner_func的内存地址
print(out(inner_x=2)) # 12
装饰器和闭包不同点在于:装饰器的入参是函数对象,闭包入参是普通数据对象
def decorator_get_function_name(func):
"""
获取正在运行函数名
:return:
"""
def wrapper(*arg):
"""
wrapper
:param arg:
:return:
"""
print(f"当前运行方法名:{
func.__name__} with params: {
arg}")
return func(*arg)
return wrapper
@decorator_get_function_name
def test_func_add(x, y):
print(x + y)
@decorator_get_function_name
def test_func_sub(x, y):
print(x - y)
test_func_add(1, 2)
# 当前运行方法名:test_func_add with params: (1, 2)
# 3
test_func_sub(3, 5)
# 当前运行方法名:test_func_sub with params: (3, 5)
# -2
常用于如鉴权校验,例如笔者会用于登陆校验:
def login_check(func):
def wrapper(request, *args, **kwargs):
if not request.session.get('login_status'):
return HttpResponseRedirect('/api/login/')
return func(request, *args, **kwargs)
return wrapper
@login_check
def edit_config():
pass
装饰器内部的执行逻辑:
"""
> 1. def login_check(func): ==>将login_check函数加载到内存
> ....
> @login_check ==>此处已经在内存中将login_check这个函数执行了!;并不需要等edit_config()实例化调用
> 2. 上例@login_check内部会执行以下操作:
> 2.1 执行login_check函数,并将 @login_check 下面的 函数(edit_config) 作为login_check函数的参数,即:@login_check 等价于 login_check(edit_config)
> 2.2 内部就会去执行:
def wrapper(*args):
# 校验session...
return func(request, *args, **kwargs) # func是参数,此时 func 等于 edit_config,此处相当于edit_config(request, *args, **kwargs)
return wrapper # 返回的 wrapper,wrapper代表的是函数对象,非函数实例化对象
2.3 其实就是将原来的 edit_config 函数塞进另外一个函数中,另一个函数当中可以做一些操作;再执行edit_config
2.4 将执行完的 login_check 函数返回值(也就是 wrapper对象)将此返回值再重新赋值给新 edit_config,即:
2.5 新edit_config = def wrapper:
# 校验session...
return 原来edit_config(request, *args, **kwargs)
> 3. 也就是新edit_config()=login_check(edit_config):wrapper(request, *args, **kwargs):return edit_config(request, *args, **kwargs) 有点绕,大家看步骤细细理解。
"""
同样一个函数也可以使用多个装饰器进行装饰,执行顺序从上到下
from functools import wraps
def w1(func):
@wraps(func)
def wrapper(*args, **kwargs):
print("这里是第一个校验")
return func(*args, **kwargs)
return wrapper
def w2(func):
@wraps(func)
def wrapper(*args, **kwargs):
print("这里是第二个校验")
return func(*args, **kwargs)
return wrapper
def w3(func):
def wrapper(*args, **kwargs):
print("这里是第三个校验")
return func(*args, **kwargs)
return wrapper
@w2 # 这里其实是w2(w1(f1))
@w1 # 这里是w1(f1)
def f1():
print(f"i`m f1, at {
f1}")
@w3
def f2():
print(f"i`m f2, at {
f2}")
# ====================== 实例化阶段 =====================
f1()
# 这里是第二个校验
# 这里是第一个校验
# i`m f1, at
f2()
# 这里是第三个校验
# i`m f2, at .inner at 0x7febc52f5f70>
有同学可能要好奇 为什么f1对象打印的是“
wraps的作用是:被修饰的函数(也就是里面的func)的一些属性值赋值给修饰器函数(wrapper)包括元信息和“函数对象”等。
同时装饰器也可以接受参数:
def decorator_get_function_duration(enable):
"""
:param enable: 是否需要统计函数执行耗时
:return:
"""
print("this is decorator_get_function_duration")
def inner(func):
print('this is inner in decorator_get_function_duration')
@wraps(func)
def wrapper(*args, **kwargs):
print('this is a wrapper in decorator_get_function_duration.inner')
if enable:
start = time.time()
print(f"函数执行前:{
start}")
result = func(*args, **kwargs)
print('[%s]`s enable was %s it`s duration : %.3f s ' % (func.__name__, enable, time.time() - start))
else:
result = func(*args, **kwargs)
return result
return wrapper
return inner
def decorator_1(func):
print('this is decorator_1')
@wraps(func)
def wrapper(*args, **kwargs):
print('this is a wrapper in decorator_1')
return func(*args, **kwargs)
return wrapper
def decorator_2(func):
print('this is decorator_2')
@wraps(func)
def wrapper(*args, **kwargs):
print('this is a wrapper in decorator_2')
return func(*args, **kwargs)
return wrapper
@decorator_1 # 此处相当:decorator_1(decorator_2(decorator_get_function_duration(enable=True)(fun)))
@decorator_2 # = decorator_2(decorator_get_function_duration(enable=True)(fun))
@decorator_get_function_duration(enable=True) # = decorator_get_function_duration(enable=True)(fun)
def fun():
time.sleep(2)
print("fun 执行完了~")
fun()
# ======== enable=False ============
"""
this is decorator_get_function_duration
this is inner in decorator_get_function_duration
this is decorator_2
this is decorator_1
this is a wrapper in decorator_1
this is a wrapper in decorator_2
this is a wrapper in decorator_get_function_duration.inner
fun 执行完了~
"""
# ======== enable=True ============
"""
this is decorator_get_function_duration
this is inner in decorator_get_function_duration
this is decorator_2
this is decorator_1
this is a wrapper in decorator_1
this is a wrapper in decorator_2
this is a wrapper in decorator_get_function_duration.inner
函数执行前:1634635708.648994
fun 执行完了~
[fun]`s enable was True it`s duration : 2.002 s
"""