python机器学习《机器学习Python实践》整理,sklearn库应用详解

Table of Contents

  • 1  初始
    • 1.1  初识机器学习
    • 1.2  python机器学习的生态圈
    • 1.3  第一个机器学习项目
      • 1.3.1  机器学习中的hello world项目
      • 1.3.2  导入数据
      • 1.3.3  概述数据
      • 1.3.4  数据可视化
      • 1.3.5  评估算法
        • 1.3.5.1  分离评估数据集
        • 1.3.5.2  创建模型
        • 1.3.5.3  选择最优模型
        • 1.3.5.4  实施预测
  • 2  数据准备
    • 2.1  数据预处理
      • 2.1.1  调整数据尺度
      • 2.1.2  正态化数据
      • 2.1.3  标准化数据
      • 2.1.4  二值数据
    • 2.2  数据特征选定
      • 2.2.1  单变量特征选定
      • 2.2.2  递归特征消除
      • 2.2.3  主要成分分析
      • 2.2.4  特征重要性
  • 3  选择模型
    • 3.1  评估算法
      • 3.1.1  分离训练数据集和评估数据集
      • 3.1.2  K折交叉验证分离
      • 3.1.3  弃一交叉验证分离
      • 3.1.4  重复分离评估数据集与训练数据集
    • 3.2  算法评估矩阵
      • 3.2.1  分类算法评估矩阵
        • 3.2.1.1  分类准确度
        • 3.2.1.2  对数损失函数
        • 3.2.1.3  AUC图
        • 3.2.1.4  混淆矩阵
        • 3.2.1.5  分类报告
      • 3.2.2  回归算法矩阵
        • 3.2.2.1  平均绝对误差
        • 3.2.2.2  均方误差
        • 3.2.2.3  决定系数$R^2$
    • 3.3  审查分类算法
      • 3.3.1  逻辑回归
      • 3.3.2  线性判别分析
      • 3.3.3  K近邻算法
      • 3.3.4  贝叶斯分类器
      • 3.3.5  分类与回归树
      • 3.3.6  支持向量机
    • 3.4  审查回归算法
      • 3.4.1  线性回归算法
      • 3.4.2  岭回归算法
      • 3.4.3  套索回归算法
      • 3.4.4  弹性网络回归算法
      • 3.4.5  K近邻算法
      • 3.4.6  分类与回归树
      • 3.4.7  支持向量机
    • 3.5  算法比较
    • 3.6  自动流程
      • 3.6.1  数据准备和生成模型的pipeline
      • 3.6.2  特征选择和生成模型的pipeline
  • 4  优化模型
    • 4.1  集成算法
      • 4.1.1  袋装算法
        • 4.1.1.1  袋装决策树
        • 4.1.1.2  随机森林
        • 4.1.1.3  极端森林
      • 4.1.2  提升算法
        • 4.1.2.1  AdaBoost
        • 4.1.2.2  随机梯度提升
      • 4.1.3  投票算法
    • 4.2  算法调参
      • 4.2.1  网格搜索优化参数
      • 4.2.2  随机搜索优化参数
  • 5  结果部署
    • 5.1  持久化加载模型
      • 5.1.1  通过pickle序列化和反序列化机器学习的模型
      • 5.1.2  通过joblib序列化和反序列化机器学习的模型

初始

初识机器学习

python机器学习的生态圈

第一个机器学习项目

import numpy as np
import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix
import pandas as pd

机器学习中的hello world项目

(1)导入数据
(2)概述数据
(3)数据可视化
(4)评估算法
(5)实施预测

#导入类库
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score

from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score

from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC

导入数据

#导入数据
filename=r'iris.data'
names=['separ-length','separ-width','petal-length','petal-width','class']
dataset=pd.read_table(filename,names=names,sep=',')
dataset
separ-length separ-width petal-length petal-width class
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
... ... ... ... ... ...
145 6.7 3.0 5.2 2.3 Iris-virginica
146 6.3 2.5 5.0 1.9 Iris-virginica
147 6.5 3.0 5.2 2.0 Iris-virginica
148 6.2 3.4 5.4 2.3 Iris-virginica
149 5.9 3.0 5.1 1.8 Iris-virginica

150 rows × 5 columns

概述数据

dataset.skew()
separ-length    0.314911
separ-width     0.334053
petal-length   -0.274464
petal-width    -0.104997
dtype: float64
dataset.hist()
array([[,
        ],
       [,
        ]], dtype=object)

python机器学习《机器学习Python实践》整理,sklearn库应用详解_第1张图片

dataset.plot(kind='density',subplots=True,layout=(2,2))
array([[, ],
       [, ]],
      dtype=object)

python机器学习《机器学习Python实践》整理,sklearn库应用详解_第2张图片

#查看数据维度
dataset.shape
(150, 5)
#查看自身
dataset.head(10)
separ-length separ-width petal-length petal-width class
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
6 4.6 3.4 1.4 0.3 Iris-setosa
7 5.0 3.4 1.5 0.2 Iris-setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
9 4.9 3.1 1.5 0.1 Iris-setosa
#统计描述数据
dataset.describe()
separ-length separ-width petal-length petal-width
count 150.000000 150.000000 150.000000 150.000000
mean 5.843333 3.054000 3.758667 1.198667
std 0.828066 0.433594 1.764420 0.763161
min 4.300000 2.000000 1.000000 0.100000
25% 5.100000 2.800000 1.600000 0.300000
50% 5.800000 3.000000 4.350000 1.300000
75% 6.400000 3.300000 5.100000 1.800000
max 7.900000 4.400000 6.900000 2.500000
#数据分类分布
dataset.groupby('class').count()
separ-length separ-width petal-length petal-width
class
Iris-setosa 50 50 50 50
Iris-versicolor 50 50 50 50
Iris-virginica 50 50 50 50

数据可视化

#单变量图表
#箱线图
plt.style.use('seaborn-notebook')
dataset.plot(kind='box',subplots=True,layout=(2,2),sharex=False,sharey=False)
separ-length       AxesSubplot(0.125,0.536818;0.352273x0.343182)
separ-width     AxesSubplot(0.547727,0.536818;0.352273x0.343182)
petal-length          AxesSubplot(0.125,0.125;0.352273x0.343182)
petal-width        AxesSubplot(0.547727,0.125;0.352273x0.343182)
dtype: object

python机器学习《机器学习Python实践》整理,sklearn库应用详解_第3张图片

#直方图
dataset.hist()
array([[,
        ],
       [,
        ]], dtype=object)

python机器学习《机器学习Python实践》整理,sklearn库应用详解_第4张图片

#多变量图表
#散点矩阵图
pd.plotting.scatter_matrix(dataset)
array([[,
        ,
        ,
        ],
       [,
        ,
        ,
        ],
       [,
        ,
        ,
        ],
       [,
        ,
        ,
        ]],
      dtype=object)

python机器学习《机器学习Python实践》整理,sklearn库应用详解_第5张图片

评估算法

(1)分离出评估数据集
(2)采用10折交叉验证来评估算法模型
(3)生成6个不同的模型来预测新数据
(4)选择最优模型

分离评估数据集

X=np.array(dataset.iloc[:,0:4])
Y=np.array(dataset.iloc[:,4])
validation_size=0.2
seed=7
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=validation_size,random_state=seed)

创建模型

models={
     }
models['LR']=LogisticRegression(max_iter=1000)
models['LDA']=LinearDiscriminantAnalysis()
models['KNN']=KNeighborsClassifier()
models['CART']=DecisionTreeClassifier()
models['NB']=GaussianNB()
models['SVM']=SVC()

results=[]
for key in models:
    kfold=KFold(n_splits=10,random_state=seed,shuffle=True)
    cv_results=cross_val_score(models[key],X_train,Y_train,cv=kfold,scoring='accuracy')
    results.append(cv_results)
    print('%s:%f(%f)' %(key,cv_results.mean(),cv_results.std()))
LR:0.983333(0.033333)
LDA:0.975000(0.038188)
KNN:0.983333(0.033333)
CART:0.958333(0.076830)
NB:0.966667(0.040825)
SVM:0.983333(0.033333)

选择最优模型

plt.boxplot(results)
plt.xticks([i+1 for i in range(6)],models.keys())
([,
  ,
  ,
  ,
  ,
  ],
 [Text(1, 0, 'LR'),
  Text(2, 0, 'LDA'),
  Text(3, 0, 'KNN'),
  Text(4, 0, 'CART'),
  Text(5, 0, 'NB'),
  Text(6, 0, 'SVM')])

python机器学习《机器学习Python实践》整理,sklearn库应用详解_第6张图片

实施预测

svm=SVC()
svm.fit(X=X_train,y=Y_train)
pred=svm.predict(X_test)
accuracy_score(Y_test,pred)
0.8666666666666667
confusion_matrix(Y_test,pred)
array([[ 7,  0,  0],
       [ 0, 10,  2],
       [ 0,  2,  9]], dtype=int64)
print(classification_report(Y_test,pred))
                 precision    recall  f1-score   support

    Iris-setosa       1.00      1.00      1.00         7
Iris-versicolor       0.83      0.83      0.83        12
 Iris-virginica       0.82      0.82      0.82        11

       accuracy                           0.87        30
      macro avg       0.88      0.88      0.88        30
   weighted avg       0.87      0.87      0.87        30

数据准备

数据预处理

调整数据尺度

from sklearn import datasets
iris=datasets.load_iris()
from sklearn.preprocessing import MinMaxScaler
transformer=MinMaxScaler(feature_range=(0,1))#聚集到0附近,方差为1
newX=transformer.fit_transform(iris.data)
newX
array([[0.22222222, 0.625     , 0.06779661, 0.04166667],
       [0.16666667, 0.41666667, 0.06779661, 0.04166667],
       [0.11111111, 0.5       , 0.05084746, 0.04166667],
       [0.08333333, 0.45833333, 0.08474576, 0.04166667],
       [0.19444444, 0.66666667, 0.06779661, 0.04166667],
       [0.30555556, 0.79166667, 0.11864407, 0.125     ],
       [0.08333333, 0.58333333, 0.06779661, 0.08333333],
       [0.19444444, 0.58333333, 0.08474576, 0.04166667],
       [0.02777778, 0.375     , 0.06779661, 0.04166667],
       [0.16666667, 0.45833333, 0.08474576, 0.        ],
       [0.30555556, 0.70833333, 0.08474576, 0.04166667],
       [0.13888889, 0.58333333, 0.10169492, 0.04166667],
       [0.13888889, 0.41666667, 0.06779661, 0.        ],
       [0.        , 0.41666667, 0.01694915, 0.        ],
       [0.41666667, 0.83333333, 0.03389831, 0.04166667],
       [0.38888889, 1.        , 0.08474576, 0.125     ],
       [0.30555556, 0.79166667, 0.05084746, 0.125     ],
       [0.22222222, 0.625     , 0.06779661, 0.08333333],
       [0.38888889, 0.75      , 0.11864407, 0.08333333],
       [0.22222222, 0.75      , 0.08474576, 0.08333333],
       [0.30555556, 0.58333333, 0.11864407, 0.04166667],
       [0.22222222, 0.70833333, 0.08474576, 0.125     ],
       [0.08333333, 0.66666667, 0.        , 0.04166667],
       [0.22222222, 0.54166667, 0.11864407, 0.16666667],
       [0.13888889, 0.58333333, 0.15254237, 0.04166667],
       [0.19444444, 0.41666667, 0.10169492, 0.04166667],
       [0.19444444, 0.58333333, 0.10169492, 0.125     ],
       [0.25      , 0.625     , 0.08474576, 0.04166667],
       [0.25      , 0.58333333, 0.06779661, 0.04166667],
       [0.11111111, 0.5       , 0.10169492, 0.04166667],
       [0.13888889, 0.45833333, 0.10169492, 0.04166667],
       [0.30555556, 0.58333333, 0.08474576, 0.125     ],
       [0.25      , 0.875     , 0.08474576, 0.        ],
       [0.33333333, 0.91666667, 0.06779661, 0.04166667],
       [0.16666667, 0.45833333, 0.08474576, 0.04166667],
       [0.19444444, 0.5       , 0.03389831, 0.04166667],
       [0.33333333, 0.625     , 0.05084746, 0.04166667],
       [0.16666667, 0.66666667, 0.06779661, 0.        ],
       [0.02777778, 0.41666667, 0.05084746, 0.04166667],
       [0.22222222, 0.58333333, 0.08474576, 0.04166667],
       [0.19444444, 0.625     , 0.05084746, 0.08333333],
       [0.05555556, 0.125     , 0.05084746, 0.08333333],
       [0.02777778, 0.5       , 0.05084746, 0.04166667],
       [0.19444444, 0.625     , 0.10169492, 0.20833333],
       [0.22222222, 0.75      , 0.15254237, 0.125     ],
       [0.13888889, 0.41666667, 0.06779661, 0.08333333],
       [0.22222222, 0.75      , 0.10169492, 0.04166667],
       [0.08333333, 0.5       , 0.06779661, 0.04166667],
       [0.27777778, 0.70833333, 0.08474576, 0.04166667],
       [0.19444444, 0.54166667, 0.06779661, 0.04166667],
       [0.75      , 0.5       , 0.62711864, 0.54166667],
       [0.58333333, 0.5       , 0.59322034, 0.58333333],
       [0.72222222, 0.45833333, 0.66101695, 0.58333333],
       [0.33333333, 0.125     , 0.50847458, 0.5       ],
       [0.61111111, 0.33333333, 0.61016949, 0.58333333],
       [0.38888889, 0.33333333, 0.59322034, 0.5       ],
       [0.55555556, 0.54166667, 0.62711864, 0.625     ],
       [0.16666667, 0.16666667, 0.38983051, 0.375     ],
       [0.63888889, 0.375     , 0.61016949, 0.5       ],
       [0.25      , 0.29166667, 0.49152542, 0.54166667],
       [0.19444444, 0.        , 0.42372881, 0.375     ],
       [0.44444444, 0.41666667, 0.54237288, 0.58333333],
       [0.47222222, 0.08333333, 0.50847458, 0.375     ],
       [0.5       , 0.375     , 0.62711864, 0.54166667],
       [0.36111111, 0.375     , 0.44067797, 0.5       ],
       [0.66666667, 0.45833333, 0.57627119, 0.54166667],
       [0.36111111, 0.41666667, 0.59322034, 0.58333333],
       [0.41666667, 0.29166667, 0.52542373, 0.375     ],
       [0.52777778, 0.08333333, 0.59322034, 0.58333333],
       [0.36111111, 0.20833333, 0.49152542, 0.41666667],
       [0.44444444, 0.5       , 0.6440678 , 0.70833333],
       [0.5       , 0.33333333, 0.50847458, 0.5       ],
       [0.55555556, 0.20833333, 0.66101695, 0.58333333],
       [0.5       , 0.33333333, 0.62711864, 0.45833333],
       [0.58333333, 0.375     , 0.55932203, 0.5       ],
       [0.63888889, 0.41666667, 0.57627119, 0.54166667],
       [0.69444444, 0.33333333, 0.6440678 , 0.54166667],
       [0.66666667, 0.41666667, 0.6779661 , 0.66666667],
       [0.47222222, 0.375     , 0.59322034, 0.58333333],
       [0.38888889, 0.25      , 0.42372881, 0.375     ],
       [0.33333333, 0.16666667, 0.47457627, 0.41666667],
       [0.33333333, 0.16666667, 0.45762712, 0.375     ],
       [0.41666667, 0.29166667, 0.49152542, 0.45833333],
       [0.47222222, 0.29166667, 0.69491525, 0.625     ],
       [0.30555556, 0.41666667, 0.59322034, 0.58333333],
       [0.47222222, 0.58333333, 0.59322034, 0.625     ],
       [0.66666667, 0.45833333, 0.62711864, 0.58333333],
       [0.55555556, 0.125     , 0.57627119, 0.5       ],
       [0.36111111, 0.41666667, 0.52542373, 0.5       ],
       [0.33333333, 0.20833333, 0.50847458, 0.5       ],
       [0.33333333, 0.25      , 0.57627119, 0.45833333],
       [0.5       , 0.41666667, 0.61016949, 0.54166667],
       [0.41666667, 0.25      , 0.50847458, 0.45833333],
       [0.19444444, 0.125     , 0.38983051, 0.375     ],
       [0.36111111, 0.29166667, 0.54237288, 0.5       ],
       [0.38888889, 0.41666667, 0.54237288, 0.45833333],
       [0.38888889, 0.375     , 0.54237288, 0.5       ],
       [0.52777778, 0.375     , 0.55932203, 0.5       ],
       [0.22222222, 0.20833333, 0.33898305, 0.41666667],
       [0.38888889, 0.33333333, 0.52542373, 0.5       ],
       [0.55555556, 0.54166667, 0.84745763, 1.        ],
       [0.41666667, 0.29166667, 0.69491525, 0.75      ],
       [0.77777778, 0.41666667, 0.83050847, 0.83333333],
       [0.55555556, 0.375     , 0.77966102, 0.70833333],
       [0.61111111, 0.41666667, 0.81355932, 0.875     ],
       [0.91666667, 0.41666667, 0.94915254, 0.83333333],
       [0.16666667, 0.20833333, 0.59322034, 0.66666667],
       [0.83333333, 0.375     , 0.89830508, 0.70833333],
       [0.66666667, 0.20833333, 0.81355932, 0.70833333],
       [0.80555556, 0.66666667, 0.86440678, 1.        ],
       [0.61111111, 0.5       , 0.69491525, 0.79166667],
       [0.58333333, 0.29166667, 0.72881356, 0.75      ],
       [0.69444444, 0.41666667, 0.76271186, 0.83333333],
       [0.38888889, 0.20833333, 0.6779661 , 0.79166667],
       [0.41666667, 0.33333333, 0.69491525, 0.95833333],
       [0.58333333, 0.5       , 0.72881356, 0.91666667],
       [0.61111111, 0.41666667, 0.76271186, 0.70833333],
       [0.94444444, 0.75      , 0.96610169, 0.875     ],
       [0.94444444, 0.25      , 1.        , 0.91666667],
       [0.47222222, 0.08333333, 0.6779661 , 0.58333333],
       [0.72222222, 0.5       , 0.79661017, 0.91666667],
       [0.36111111, 0.33333333, 0.66101695, 0.79166667],
       [0.94444444, 0.33333333, 0.96610169, 0.79166667],
       [0.55555556, 0.29166667, 0.66101695, 0.70833333],
       [0.66666667, 0.54166667, 0.79661017, 0.83333333],
       [0.80555556, 0.5       , 0.84745763, 0.70833333],
       [0.52777778, 0.33333333, 0.6440678 , 0.70833333],
       [0.5       , 0.41666667, 0.66101695, 0.70833333],
       [0.58333333, 0.33333333, 0.77966102, 0.83333333],
       [0.80555556, 0.41666667, 0.81355932, 0.625     ],
       [0.86111111, 0.33333333, 0.86440678, 0.75      ],
       [1.        , 0.75      , 0.91525424, 0.79166667],
       [0.58333333, 0.33333333, 0.77966102, 0.875     ],
       [0.55555556, 0.33333333, 0.69491525, 0.58333333],
       [0.5       , 0.25      , 0.77966102, 0.54166667],
       [0.94444444, 0.41666667, 0.86440678, 0.91666667],
       [0.55555556, 0.58333333, 0.77966102, 0.95833333],
       [0.58333333, 0.45833333, 0.76271186, 0.70833333],
       [0.47222222, 0.41666667, 0.6440678 , 0.70833333],
       [0.72222222, 0.45833333, 0.74576271, 0.83333333],
       [0.66666667, 0.45833333, 0.77966102, 0.95833333],
       [0.72222222, 0.45833333, 0.69491525, 0.91666667],
       [0.41666667, 0.29166667, 0.69491525, 0.75      ],
       [0.69444444, 0.5       , 0.83050847, 0.91666667],
       [0.66666667, 0.54166667, 0.79661017, 1.        ],
       [0.66666667, 0.41666667, 0.71186441, 0.91666667],
       [0.55555556, 0.20833333, 0.6779661 , 0.75      ],
       [0.61111111, 0.41666667, 0.71186441, 0.79166667],
       [0.52777778, 0.58333333, 0.74576271, 0.91666667],
       [0.44444444, 0.41666667, 0.69491525, 0.70833333]])

正态化数据

from sklearn.preprocessing import StandardScaler
transformer=StandardScaler()
newX=transformer.fit_transform(iris.data)
newX
array([[-9.00681170e-01,  1.01900435e+00, -1.34022653e+00,
        -1.31544430e+00],
       [-1.14301691e+00, -1.31979479e-01, -1.34022653e+00,
        -1.31544430e+00],
       [-1.38535265e+00,  3.28414053e-01, -1.39706395e+00,
        -1.31544430e+00],
       [-1.50652052e+00,  9.82172869e-02, -1.28338910e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  1.24920112e+00, -1.34022653e+00,
        -1.31544430e+00],
       [-5.37177559e-01,  1.93979142e+00, -1.16971425e+00,
        -1.05217993e+00],
       [-1.50652052e+00,  7.88807586e-01, -1.34022653e+00,
        -1.18381211e+00],
       [-1.02184904e+00,  7.88807586e-01, -1.28338910e+00,
        -1.31544430e+00],
       [-1.74885626e+00, -3.62176246e-01, -1.34022653e+00,
        -1.31544430e+00],
       [-1.14301691e+00,  9.82172869e-02, -1.28338910e+00,
        -1.44707648e+00],
       [-5.37177559e-01,  1.47939788e+00, -1.28338910e+00,
        -1.31544430e+00],
       [-1.26418478e+00,  7.88807586e-01, -1.22655167e+00,
        -1.31544430e+00],
       [-1.26418478e+00, -1.31979479e-01, -1.34022653e+00,
        -1.44707648e+00],
       [-1.87002413e+00, -1.31979479e-01, -1.51073881e+00,
        -1.44707648e+00],
       [-5.25060772e-02,  2.16998818e+00, -1.45390138e+00,
        -1.31544430e+00],
       [-1.73673948e-01,  3.09077525e+00, -1.28338910e+00,
        -1.05217993e+00],
       [-5.37177559e-01,  1.93979142e+00, -1.39706395e+00,
        -1.05217993e+00],
       [-9.00681170e-01,  1.01900435e+00, -1.34022653e+00,
        -1.18381211e+00],
       [-1.73673948e-01,  1.70959465e+00, -1.16971425e+00,
        -1.18381211e+00],
       [-9.00681170e-01,  1.70959465e+00, -1.28338910e+00,
        -1.18381211e+00],
       [-5.37177559e-01,  7.88807586e-01, -1.16971425e+00,
        -1.31544430e+00],
       [-9.00681170e-01,  1.47939788e+00, -1.28338910e+00,
        -1.05217993e+00],
       [-1.50652052e+00,  1.24920112e+00, -1.56757623e+00,
        -1.31544430e+00],
       [-9.00681170e-01,  5.58610819e-01, -1.16971425e+00,
        -9.20547742e-01],
       [-1.26418478e+00,  7.88807586e-01, -1.05603939e+00,
        -1.31544430e+00],
       [-1.02184904e+00, -1.31979479e-01, -1.22655167e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  7.88807586e-01, -1.22655167e+00,
        -1.05217993e+00],
       [-7.79513300e-01,  1.01900435e+00, -1.28338910e+00,
        -1.31544430e+00],
       [-7.79513300e-01,  7.88807586e-01, -1.34022653e+00,
        -1.31544430e+00],
       [-1.38535265e+00,  3.28414053e-01, -1.22655167e+00,
        -1.31544430e+00],
       [-1.26418478e+00,  9.82172869e-02, -1.22655167e+00,
        -1.31544430e+00],
       [-5.37177559e-01,  7.88807586e-01, -1.28338910e+00,
        -1.05217993e+00],
       [-7.79513300e-01,  2.40018495e+00, -1.28338910e+00,
        -1.44707648e+00],
       [-4.16009689e-01,  2.63038172e+00, -1.34022653e+00,
        -1.31544430e+00],
       [-1.14301691e+00,  9.82172869e-02, -1.28338910e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  3.28414053e-01, -1.45390138e+00,
        -1.31544430e+00],
       [-4.16009689e-01,  1.01900435e+00, -1.39706395e+00,
        -1.31544430e+00],
       [-1.14301691e+00,  1.24920112e+00, -1.34022653e+00,
        -1.44707648e+00],
       [-1.74885626e+00, -1.31979479e-01, -1.39706395e+00,
        -1.31544430e+00],
       [-9.00681170e-01,  7.88807586e-01, -1.28338910e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  1.01900435e+00, -1.39706395e+00,
        -1.18381211e+00],
       [-1.62768839e+00, -1.74335684e+00, -1.39706395e+00,
        -1.18381211e+00],
       [-1.74885626e+00,  3.28414053e-01, -1.39706395e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  1.01900435e+00, -1.22655167e+00,
        -7.88915558e-01],
       [-9.00681170e-01,  1.70959465e+00, -1.05603939e+00,
        -1.05217993e+00],
       [-1.26418478e+00, -1.31979479e-01, -1.34022653e+00,
        -1.18381211e+00],
       [-9.00681170e-01,  1.70959465e+00, -1.22655167e+00,
        -1.31544430e+00],
       [-1.50652052e+00,  3.28414053e-01, -1.34022653e+00,
        -1.31544430e+00],
       [-6.58345429e-01,  1.47939788e+00, -1.28338910e+00,
        -1.31544430e+00],
       [-1.02184904e+00,  5.58610819e-01, -1.34022653e+00,
        -1.31544430e+00],
       [ 1.40150837e+00,  3.28414053e-01,  5.35408562e-01,
         2.64141916e-01],
       [ 6.74501145e-01,  3.28414053e-01,  4.21733708e-01,
         3.95774101e-01],
       [ 1.28034050e+00,  9.82172869e-02,  6.49083415e-01,
         3.95774101e-01],
       [-4.16009689e-01, -1.74335684e+00,  1.37546573e-01,
         1.32509732e-01],
       [ 7.95669016e-01, -5.92373012e-01,  4.78571135e-01,
         3.95774101e-01],
       [-1.73673948e-01, -5.92373012e-01,  4.21733708e-01,
         1.32509732e-01],
       [ 5.53333275e-01,  5.58610819e-01,  5.35408562e-01,
         5.27406285e-01],
       [-1.14301691e+00, -1.51316008e+00, -2.60315415e-01,
        -2.62386821e-01],
       [ 9.16836886e-01, -3.62176246e-01,  4.78571135e-01,
         1.32509732e-01],
       [-7.79513300e-01, -8.22569778e-01,  8.07091462e-02,
         2.64141916e-01],
       [-1.02184904e+00, -2.43394714e+00, -1.46640561e-01,
        -2.62386821e-01],
       [ 6.86617933e-02, -1.31979479e-01,  2.51221427e-01,
         3.95774101e-01],
       [ 1.89829664e-01, -1.97355361e+00,  1.37546573e-01,
        -2.62386821e-01],
       [ 3.10997534e-01, -3.62176246e-01,  5.35408562e-01,
         2.64141916e-01],
       [-2.94841818e-01, -3.62176246e-01, -8.98031345e-02,
         1.32509732e-01],
       [ 1.03800476e+00,  9.82172869e-02,  3.64896281e-01,
         2.64141916e-01],
       [-2.94841818e-01, -1.31979479e-01,  4.21733708e-01,
         3.95774101e-01],
       [-5.25060772e-02, -8.22569778e-01,  1.94384000e-01,
        -2.62386821e-01],
       [ 4.32165405e-01, -1.97355361e+00,  4.21733708e-01,
         3.95774101e-01],
       [-2.94841818e-01, -1.28296331e+00,  8.07091462e-02,
        -1.30754636e-01],
       [ 6.86617933e-02,  3.28414053e-01,  5.92245988e-01,
         7.90670654e-01],
       [ 3.10997534e-01, -5.92373012e-01,  1.37546573e-01,
         1.32509732e-01],
       [ 5.53333275e-01, -1.28296331e+00,  6.49083415e-01,
         3.95774101e-01],
       [ 3.10997534e-01, -5.92373012e-01,  5.35408562e-01,
         8.77547895e-04],
       [ 6.74501145e-01, -3.62176246e-01,  3.08058854e-01,
         1.32509732e-01],
       [ 9.16836886e-01, -1.31979479e-01,  3.64896281e-01,
         2.64141916e-01],
       [ 1.15917263e+00, -5.92373012e-01,  5.92245988e-01,
         2.64141916e-01],
       [ 1.03800476e+00, -1.31979479e-01,  7.05920842e-01,
         6.59038469e-01],
       [ 1.89829664e-01, -3.62176246e-01,  4.21733708e-01,
         3.95774101e-01],
       [-1.73673948e-01, -1.05276654e+00, -1.46640561e-01,
        -2.62386821e-01],
       [-4.16009689e-01, -1.51316008e+00,  2.38717193e-02,
        -1.30754636e-01],
       [-4.16009689e-01, -1.51316008e+00, -3.29657076e-02,
        -2.62386821e-01],
       [-5.25060772e-02, -8.22569778e-01,  8.07091462e-02,
         8.77547895e-04],
       [ 1.89829664e-01, -8.22569778e-01,  7.62758269e-01,
         5.27406285e-01],
       [-5.37177559e-01, -1.31979479e-01,  4.21733708e-01,
         3.95774101e-01],
       [ 1.89829664e-01,  7.88807586e-01,  4.21733708e-01,
         5.27406285e-01],
       [ 1.03800476e+00,  9.82172869e-02,  5.35408562e-01,
         3.95774101e-01],
       [ 5.53333275e-01, -1.74335684e+00,  3.64896281e-01,
         1.32509732e-01],
       [-2.94841818e-01, -1.31979479e-01,  1.94384000e-01,
         1.32509732e-01],
       [-4.16009689e-01, -1.28296331e+00,  1.37546573e-01,
         1.32509732e-01],
       [-4.16009689e-01, -1.05276654e+00,  3.64896281e-01,
         8.77547895e-04],
       [ 3.10997534e-01, -1.31979479e-01,  4.78571135e-01,
         2.64141916e-01],
       [-5.25060772e-02, -1.05276654e+00,  1.37546573e-01,
         8.77547895e-04],
       [-1.02184904e+00, -1.74335684e+00, -2.60315415e-01,
        -2.62386821e-01],
       [-2.94841818e-01, -8.22569778e-01,  2.51221427e-01,
         1.32509732e-01],
       [-1.73673948e-01, -1.31979479e-01,  2.51221427e-01,
         8.77547895e-04],
       [-1.73673948e-01, -3.62176246e-01,  2.51221427e-01,
         1.32509732e-01],
       [ 4.32165405e-01, -3.62176246e-01,  3.08058854e-01,
         1.32509732e-01],
       [-9.00681170e-01, -1.28296331e+00, -4.30827696e-01,
        -1.30754636e-01],
       [-1.73673948e-01, -5.92373012e-01,  1.94384000e-01,
         1.32509732e-01],
       [ 5.53333275e-01,  5.58610819e-01,  1.27429511e+00,
         1.71209594e+00],
       [-5.25060772e-02, -8.22569778e-01,  7.62758269e-01,
         9.22302838e-01],
       [ 1.52267624e+00, -1.31979479e-01,  1.21745768e+00,
         1.18556721e+00],
       [ 5.53333275e-01, -3.62176246e-01,  1.04694540e+00,
         7.90670654e-01],
       [ 7.95669016e-01, -1.31979479e-01,  1.16062026e+00,
         1.31719939e+00],
       [ 2.12851559e+00, -1.31979479e-01,  1.61531967e+00,
         1.18556721e+00],
       [-1.14301691e+00, -1.28296331e+00,  4.21733708e-01,
         6.59038469e-01],
       [ 1.76501198e+00, -3.62176246e-01,  1.44480739e+00,
         7.90670654e-01],
       [ 1.03800476e+00, -1.28296331e+00,  1.16062026e+00,
         7.90670654e-01],
       [ 1.64384411e+00,  1.24920112e+00,  1.33113254e+00,
         1.71209594e+00],
       [ 7.95669016e-01,  3.28414053e-01,  7.62758269e-01,
         1.05393502e+00],
       [ 6.74501145e-01, -8.22569778e-01,  8.76433123e-01,
         9.22302838e-01],
       [ 1.15917263e+00, -1.31979479e-01,  9.90107977e-01,
         1.18556721e+00],
       [-1.73673948e-01, -1.28296331e+00,  7.05920842e-01,
         1.05393502e+00],
       [-5.25060772e-02, -5.92373012e-01,  7.62758269e-01,
         1.58046376e+00],
       [ 6.74501145e-01,  3.28414053e-01,  8.76433123e-01,
         1.44883158e+00],
       [ 7.95669016e-01, -1.31979479e-01,  9.90107977e-01,
         7.90670654e-01],
       [ 2.24968346e+00,  1.70959465e+00,  1.67215710e+00,
         1.31719939e+00],
       [ 2.24968346e+00, -1.05276654e+00,  1.78583195e+00,
         1.44883158e+00],
       [ 1.89829664e-01, -1.97355361e+00,  7.05920842e-01,
         3.95774101e-01],
       [ 1.28034050e+00,  3.28414053e-01,  1.10378283e+00,
         1.44883158e+00],
       [-2.94841818e-01, -5.92373012e-01,  6.49083415e-01,
         1.05393502e+00],
       [ 2.24968346e+00, -5.92373012e-01,  1.67215710e+00,
         1.05393502e+00],
       [ 5.53333275e-01, -8.22569778e-01,  6.49083415e-01,
         7.90670654e-01],
       [ 1.03800476e+00,  5.58610819e-01,  1.10378283e+00,
         1.18556721e+00],
       [ 1.64384411e+00,  3.28414053e-01,  1.27429511e+00,
         7.90670654e-01],
       [ 4.32165405e-01, -5.92373012e-01,  5.92245988e-01,
         7.90670654e-01],
       [ 3.10997534e-01, -1.31979479e-01,  6.49083415e-01,
         7.90670654e-01],
       [ 6.74501145e-01, -5.92373012e-01,  1.04694540e+00,
         1.18556721e+00],
       [ 1.64384411e+00, -1.31979479e-01,  1.16062026e+00,
         5.27406285e-01],
       [ 1.88617985e+00, -5.92373012e-01,  1.33113254e+00,
         9.22302838e-01],
       [ 2.49201920e+00,  1.70959465e+00,  1.50164482e+00,
         1.05393502e+00],
       [ 6.74501145e-01, -5.92373012e-01,  1.04694540e+00,
         1.31719939e+00],
       [ 5.53333275e-01, -5.92373012e-01,  7.62758269e-01,
         3.95774101e-01],
       [ 3.10997534e-01, -1.05276654e+00,  1.04694540e+00,
         2.64141916e-01],
       [ 2.24968346e+00, -1.31979479e-01,  1.33113254e+00,
         1.44883158e+00],
       [ 5.53333275e-01,  7.88807586e-01,  1.04694540e+00,
         1.58046376e+00],
       [ 6.74501145e-01,  9.82172869e-02,  9.90107977e-01,
         7.90670654e-01],
       [ 1.89829664e-01, -1.31979479e-01,  5.92245988e-01,
         7.90670654e-01],
       [ 1.28034050e+00,  9.82172869e-02,  9.33270550e-01,
         1.18556721e+00],
       [ 1.03800476e+00,  9.82172869e-02,  1.04694540e+00,
         1.58046376e+00],
       [ 1.28034050e+00,  9.82172869e-02,  7.62758269e-01,
         1.44883158e+00],
       [-5.25060772e-02, -8.22569778e-01,  7.62758269e-01,
         9.22302838e-01],
       [ 1.15917263e+00,  3.28414053e-01,  1.21745768e+00,
         1.44883158e+00],
       [ 1.03800476e+00,  5.58610819e-01,  1.10378283e+00,
         1.71209594e+00],
       [ 1.03800476e+00, -1.31979479e-01,  8.19595696e-01,
         1.44883158e+00],
       [ 5.53333275e-01, -1.28296331e+00,  7.05920842e-01,
         9.22302838e-01],
       [ 7.95669016e-01, -1.31979479e-01,  8.19595696e-01,
         1.05393502e+00],
       [ 4.32165405e-01,  7.88807586e-01,  9.33270550e-01,
         1.44883158e+00],
       [ 6.86617933e-02, -1.31979479e-01,  7.62758269e-01,
         7.90670654e-01]])

标准化数据

from sklearn.preprocessing import Normalizer
transformer=Normalizer()
newX=transformer.fit_transform(iris.data)
newX
array([[0.80377277, 0.55160877, 0.22064351, 0.0315205 ],
       [0.82813287, 0.50702013, 0.23660939, 0.03380134],
       [0.80533308, 0.54831188, 0.2227517 , 0.03426949],
       [0.80003025, 0.53915082, 0.26087943, 0.03478392],
       [0.790965  , 0.5694948 , 0.2214702 , 0.0316386 ],
       [0.78417499, 0.5663486 , 0.2468699 , 0.05808704],
       [0.78010936, 0.57660257, 0.23742459, 0.0508767 ],
       [0.80218492, 0.54548574, 0.24065548, 0.0320874 ],
       [0.80642366, 0.5315065 , 0.25658935, 0.03665562],
       [0.81803119, 0.51752994, 0.25041771, 0.01669451],
       [0.80373519, 0.55070744, 0.22325977, 0.02976797],
       [0.786991  , 0.55745196, 0.26233033, 0.03279129],
       [0.82307218, 0.51442011, 0.24006272, 0.01714734],
       [0.8025126 , 0.55989251, 0.20529392, 0.01866308],
       [0.81120865, 0.55945424, 0.16783627, 0.02797271],
       [0.77381111, 0.59732787, 0.2036345 , 0.05430253],
       [0.79428944, 0.57365349, 0.19121783, 0.05883625],
       [0.80327412, 0.55126656, 0.22050662, 0.04725142],
       [0.8068282 , 0.53788547, 0.24063297, 0.04246464],
       [0.77964883, 0.58091482, 0.22930848, 0.0458617 ],
       [0.8173379 , 0.51462016, 0.25731008, 0.03027177],
       [0.78591858, 0.57017622, 0.23115252, 0.06164067],
       [0.77577075, 0.60712493, 0.16864581, 0.03372916],
       [0.80597792, 0.52151512, 0.26865931, 0.07901744],
       [0.776114  , 0.54974742, 0.30721179, 0.03233808],
       [0.82647451, 0.4958847 , 0.26447184, 0.03305898],
       [0.79778206, 0.5424918 , 0.25529026, 0.06382256],
       [0.80641965, 0.54278246, 0.23262105, 0.03101614],
       [0.81609427, 0.5336001 , 0.21971769, 0.03138824],
       [0.79524064, 0.54144043, 0.27072022, 0.03384003],
       [0.80846584, 0.52213419, 0.26948861, 0.03368608],
       [0.82225028, 0.51771314, 0.22840286, 0.06090743],
       [0.76578311, 0.60379053, 0.22089897, 0.0147266 ],
       [0.77867447, 0.59462414, 0.19820805, 0.02831544],
       [0.81768942, 0.51731371, 0.25031309, 0.03337508],
       [0.82512295, 0.52807869, 0.19802951, 0.03300492],
       [0.82699754, 0.52627116, 0.19547215, 0.03007264],
       [0.78523221, 0.5769053 , 0.22435206, 0.01602515],
       [0.80212413, 0.54690282, 0.23699122, 0.03646019],
       [0.80779568, 0.53853046, 0.23758697, 0.03167826],
       [0.80033301, 0.56023311, 0.20808658, 0.04801998],
       [0.86093857, 0.44003527, 0.24871559, 0.0573959 ],
       [0.78609038, 0.57170209, 0.23225397, 0.03573138],
       [0.78889479, 0.55222635, 0.25244633, 0.09466737],
       [0.76693897, 0.57144472, 0.28572236, 0.06015208],
       [0.82210585, 0.51381615, 0.23978087, 0.05138162],
       [0.77729093, 0.57915795, 0.24385598, 0.030482  ],
       [0.79594782, 0.55370283, 0.24224499, 0.03460643],
       [0.79837025, 0.55735281, 0.22595384, 0.03012718],
       [0.81228363, 0.5361072 , 0.22743942, 0.03249135],
       [0.76701103, 0.35063361, 0.51499312, 0.15340221],
       [0.74549757, 0.37274878, 0.52417798, 0.17472599],
       [0.75519285, 0.33928954, 0.53629637, 0.16417236],
       [0.75384916, 0.31524601, 0.54825394, 0.17818253],
       [0.7581754 , 0.32659863, 0.5365549 , 0.17496355],
       [0.72232962, 0.35482858, 0.57026022, 0.16474184],
       [0.72634846, 0.38046824, 0.54187901, 0.18446945],
       [0.75916547, 0.37183615, 0.51127471, 0.15493173],
       [0.76301853, 0.33526572, 0.53180079, 0.15029153],
       [0.72460233, 0.37623583, 0.54345175, 0.19508524],
       [0.76923077, 0.30769231, 0.53846154, 0.15384615],
       [0.73923462, 0.37588201, 0.52623481, 0.187941  ],
       [0.78892752, 0.28927343, 0.52595168, 0.13148792],
       [0.73081412, 0.34743622, 0.56308629, 0.16772783],
       [0.75911707, 0.3931142 , 0.48800383, 0.17622361],
       [0.76945444, 0.35601624, 0.50531337, 0.16078153],
       [0.70631892, 0.37838513, 0.5675777 , 0.18919257],
       [0.75676497, 0.35228714, 0.53495455, 0.13047672],
       [0.76444238, 0.27125375, 0.55483721, 0.18494574],
       [0.76185188, 0.34011245, 0.53057542, 0.14964948],
       [0.6985796 , 0.37889063, 0.56833595, 0.21312598],
       [0.77011854, 0.35349703, 0.50499576, 0.16412362],
       [0.74143307, 0.29421947, 0.57667016, 0.17653168],
       [0.73659895, 0.33811099, 0.56754345, 0.14490471],
       [0.76741698, 0.34773582, 0.51560829, 0.15588157],
       [0.76785726, 0.34902603, 0.51190484, 0.16287881],
       [0.76467269, 0.31486523, 0.53976896, 0.15743261],
       [0.74088576, 0.33173989, 0.55289982, 0.18798594],
       [0.73350949, 0.35452959, 0.55013212, 0.18337737],
       [0.78667474, 0.35883409, 0.48304589, 0.13801311],
       [0.76521855, 0.33391355, 0.52869645, 0.15304371],
       [0.77242925, 0.33706004, 0.51963422, 0.14044168],
       [0.76434981, 0.35581802, 0.51395936, 0.15814134],
       [0.70779525, 0.31850786, 0.60162596, 0.1887454 ],
       [0.69333409, 0.38518561, 0.57777841, 0.1925928 ],
       [0.71524936, 0.40530797, 0.53643702, 0.19073316],
       [0.75457341, 0.34913098, 0.52932761, 0.16893434],
       [0.77530021, 0.28304611, 0.54147951, 0.15998258],
       [0.72992443, 0.39103094, 0.53440896, 0.16944674],
       [0.74714194, 0.33960997, 0.54337595, 0.17659719],
       [0.72337118, 0.34195729, 0.57869695, 0.15782644],
       [0.73260391, 0.36029701, 0.55245541, 0.1681386 ],
       [0.76262994, 0.34186859, 0.52595168, 0.1577855 ],
       [0.76986879, 0.35413965, 0.5081134 , 0.15397376],
       [0.73544284, 0.35458851, 0.55158213, 0.1707278 ],
       [0.73239618, 0.38547167, 0.53966034, 0.15418867],
       [0.73446047, 0.37367287, 0.5411814 , 0.16750853],
       [0.75728103, 0.3542121 , 0.52521104, 0.15878473],
       [0.78258054, 0.38361791, 0.4603415 , 0.16879188],
       [0.7431482 , 0.36505526, 0.5345452 , 0.16948994],
       [0.65387747, 0.34250725, 0.62274045, 0.25947519],
       [0.69052512, 0.32145135, 0.60718588, 0.22620651],
       [0.71491405, 0.30207636, 0.59408351, 0.21145345],
       [0.69276796, 0.31889319, 0.61579374, 0.1979337 ],
       [0.68619022, 0.31670318, 0.61229281, 0.232249  ],
       [0.70953708, 0.28008043, 0.61617694, 0.1960563 ],
       [0.67054118, 0.34211284, 0.61580312, 0.23263673],
       [0.71366557, 0.28351098, 0.61590317, 0.17597233],
       [0.71414125, 0.26647062, 0.61821183, 0.19185884],
       [0.69198788, 0.34599394, 0.58626751, 0.24027357],
       [0.71562645, 0.3523084 , 0.56149152, 0.22019275],
       [0.71576546, 0.30196356, 0.59274328, 0.21249287],
       [0.71718148, 0.31640359, 0.58007326, 0.22148252],
       [0.6925518 , 0.30375079, 0.60750157, 0.24300063],
       [0.67767924, 0.32715549, 0.59589036, 0.28041899],
       [0.69589887, 0.34794944, 0.57629125, 0.25008866],
       [0.70610474, 0.3258945 , 0.59747324, 0.1955367 ],
       [0.69299099, 0.34199555, 0.60299216, 0.19799743],
       [0.70600618, 0.2383917 , 0.63265489, 0.21088496],
       [0.72712585, 0.26661281, 0.60593821, 0.18178146],
       [0.70558934, 0.32722984, 0.58287815, 0.23519645],
       [0.68307923, 0.34153961, 0.59769433, 0.24395687],
       [0.71486543, 0.25995106, 0.62202576, 0.18567933],
       [0.73122464, 0.31338199, 0.56873028, 0.20892133],
       [0.69595601, 0.3427843 , 0.59208198, 0.21813547],
       [0.71529453, 0.31790868, 0.59607878, 0.17882363],
       [0.72785195, 0.32870733, 0.56349829, 0.21131186],
       [0.71171214, 0.35002236, 0.57170319, 0.21001342],
       [0.69594002, 0.30447376, 0.60894751, 0.22835532],
       [0.73089855, 0.30454106, 0.58877939, 0.1624219 ],
       [0.72766159, 0.27533141, 0.59982915, 0.18683203],
       [0.71578999, 0.34430405, 0.5798805 , 0.18121266],
       [0.69417747, 0.30370264, 0.60740528, 0.2386235 ],
       [0.72366005, 0.32162669, 0.58582004, 0.17230001],
       [0.69385414, 0.29574111, 0.63698085, 0.15924521],
       [0.73154399, 0.28501714, 0.57953485, 0.21851314],
       [0.67017484, 0.36168166, 0.59571097, 0.2553047 ],
       [0.69804799, 0.338117  , 0.59988499, 0.196326  ],
       [0.71066905, 0.35533453, 0.56853524, 0.21320072],
       [0.72415258, 0.32534391, 0.56672811, 0.22039426],
       [0.69997037, 0.32386689, 0.58504986, 0.25073566],
       [0.73337886, 0.32948905, 0.54206264, 0.24445962],
       [0.69052512, 0.32145135, 0.60718588, 0.22620651],
       [0.69193502, 0.32561648, 0.60035539, 0.23403685],
       [0.68914871, 0.33943145, 0.58629069, 0.25714504],
       [0.72155725, 0.32308533, 0.56001458, 0.24769876],
       [0.72965359, 0.28954508, 0.57909015, 0.22005426],
       [0.71653899, 0.3307103 , 0.57323119, 0.22047353],
       [0.67467072, 0.36998072, 0.58761643, 0.25028107],
       [0.69025916, 0.35097923, 0.5966647 , 0.21058754]])

二值数据

from sklearn.preprocessing import Binarizer
transformer=Binarizer(threshold=0.25)
newX=transformer.fit_transform(iris.data)
newX
array([[1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 0.],
       [1., 1., 1., 1.],
       [1., 1., 1., 0.],
       [1., 1., 1., 1.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 1.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 1.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 0.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 0.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.]])

数据特征选定

单变量特征选定

#通过卡方检验选定数据特征
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
test=SelectKBest(score_func=chi2,k=3)#k表示选取最高的数据特征
fit=test.fit(iris.data,iris.target)
print(test.scores_)
features=fit.transform(X)
features
[ 10.81782088   3.7107283  116.31261309  67.0483602 ]





array([[5.1, 1.4, 0.2],
       [4.9, 1.4, 0.2],
       [4.7, 1.3, 0.2],
       [4.6, 1.5, 0.2],
       [5. , 1.4, 0.2],
       [5.4, 1.7, 0.4],
       [4.6, 1.4, 0.3],
       [5. , 1.5, 0.2],
       [4.4, 1.4, 0.2],
       [4.9, 1.5, 0.1],
       [5.4, 1.5, 0.2],
       [4.8, 1.6, 0.2],
       [4.8, 1.4, 0.1],
       [4.3, 1.1, 0.1],
       [5.8, 1.2, 0.2],
       [5.7, 1.5, 0.4],
       [5.4, 1.3, 0.4],
       [5.1, 1.4, 0.3],
       [5.7, 1.7, 0.3],
       [5.1, 1.5, 0.3],
       [5.4, 1.7, 0.2],
       [5.1, 1.5, 0.4],
       [4.6, 1. , 0.2],
       [5.1, 1.7, 0.5],
       [4.8, 1.9, 0.2],
       [5. , 1.6, 0.2],
       [5. , 1.6, 0.4],
       [5.2, 1.5, 0.2],
       [5.2, 1.4, 0.2],
       [4.7, 1.6, 0.2],
       [4.8, 1.6, 0.2],
       [5.4, 1.5, 0.4],
       [5.2, 1.5, 0.1],
       [5.5, 1.4, 0.2],
       [4.9, 1.5, 0.1],
       [5. , 1.2, 0.2],
       [5.5, 1.3, 0.2],
       [4.9, 1.5, 0.1],
       [4.4, 1.3, 0.2],
       [5.1, 1.5, 0.2],
       [5. , 1.3, 0.3],
       [4.5, 1.3, 0.3],
       [4.4, 1.3, 0.2],
       [5. , 1.6, 0.6],
       [5.1, 1.9, 0.4],
       [4.8, 1.4, 0.3],
       [5.1, 1.6, 0.2],
       [4.6, 1.4, 0.2],
       [5.3, 1.5, 0.2],
       [5. , 1.4, 0.2],
       [7. , 4.7, 1.4],
       [6.4, 4.5, 1.5],
       [6.9, 4.9, 1.5],
       [5.5, 4. , 1.3],
       [6.5, 4.6, 1.5],
       [5.7, 4.5, 1.3],
       [6.3, 4.7, 1.6],
       [4.9, 3.3, 1. ],
       [6.6, 4.6, 1.3],
       [5.2, 3.9, 1.4],
       [5. , 3.5, 1. ],
       [5.9, 4.2, 1.5],
       [6. , 4. , 1. ],
       [6.1, 4.7, 1.4],
       [5.6, 3.6, 1.3],
       [6.7, 4.4, 1.4],
       [5.6, 4.5, 1.5],
       [5.8, 4.1, 1. ],
       [6.2, 4.5, 1.5],
       [5.6, 3.9, 1.1],
       [5.9, 4.8, 1.8],
       [6.1, 4. , 1.3],
       [6.3, 4.9, 1.5],
       [6.1, 4.7, 1.2],
       [6.4, 4.3, 1.3],
       [6.6, 4.4, 1.4],
       [6.8, 4.8, 1.4],
       [6.7, 5. , 1.7],
       [6. , 4.5, 1.5],
       [5.7, 3.5, 1. ],
       [5.5, 3.8, 1.1],
       [5.5, 3.7, 1. ],
       [5.8, 3.9, 1.2],
       [6. , 5.1, 1.6],
       [5.4, 4.5, 1.5],
       [6. , 4.5, 1.6],
       [6.7, 4.7, 1.5],
       [6.3, 4.4, 1.3],
       [5.6, 4.1, 1.3],
       [5.5, 4. , 1.3],
       [5.5, 4.4, 1.2],
       [6.1, 4.6, 1.4],
       [5.8, 4. , 1.2],
       [5. , 3.3, 1. ],
       [5.6, 4.2, 1.3],
       [5.7, 4.2, 1.2],
       [5.7, 4.2, 1.3],
       [6.2, 4.3, 1.3],
       [5.1, 3. , 1.1],
       [5.7, 4.1, 1.3],
       [6.3, 6. , 2.5],
       [5.8, 5.1, 1.9],
       [7.1, 5.9, 2.1],
       [6.3, 5.6, 1.8],
       [6.5, 5.8, 2.2],
       [7.6, 6.6, 2.1],
       [4.9, 4.5, 1.7],
       [7.3, 6.3, 1.8],
       [6.7, 5.8, 1.8],
       [7.2, 6.1, 2.5],
       [6.5, 5.1, 2. ],
       [6.4, 5.3, 1.9],
       [6.8, 5.5, 2.1],
       [5.7, 5. , 2. ],
       [5.8, 5.1, 2.4],
       [6.4, 5.3, 2.3],
       [6.5, 5.5, 1.8],
       [7.7, 6.7, 2.2],
       [7.7, 6.9, 2.3],
       [6. , 5. , 1.5],
       [6.9, 5.7, 2.3],
       [5.6, 4.9, 2. ],
       [7.7, 6.7, 2. ],
       [6.3, 4.9, 1.8],
       [6.7, 5.7, 2.1],
       [7.2, 6. , 1.8],
       [6.2, 4.8, 1.8],
       [6.1, 4.9, 1.8],
       [6.4, 5.6, 2.1],
       [7.2, 5.8, 1.6],
       [7.4, 6.1, 1.9],
       [7.9, 6.4, 2. ],
       [6.4, 5.6, 2.2],
       [6.3, 5.1, 1.5],
       [6.1, 5.6, 1.4],
       [7.7, 6.1, 2.3],
       [6.3, 5.6, 2.4],
       [6.4, 5.5, 1.8],
       [6. , 4.8, 1.8],
       [6.9, 5.4, 2.1],
       [6.7, 5.6, 2.4],
       [6.9, 5.1, 2.3],
       [5.8, 5.1, 1.9],
       [6.8, 5.9, 2.3],
       [6.7, 5.7, 2.5],
       [6.7, 5.2, 2.3],
       [6.3, 5. , 1.9],
       [6.5, 5.2, 2. ],
       [6.2, 5.4, 2.3],
       [5.9, 5.1, 1.8]])

递归特征消除

from sklearn.linear_model import LogisticRegression
from sklearn.feature_selection import RFE
mode=LogisticRegression(max_iter=1000)
rfe=RFE(mode,n_features_to_select=3)
fit=rfe.fit(iris.data,iris.target)
print('特征个数:',fit.n_features_)
print('被选定的特征:',fit.support_)
print('特征排名:',fit.ranking_)
特征个数: 3
被选定的特征: [False  True  True  True]
特征排名: [2 1 1 1]

主要成分分析

from sklearn.decomposition import PCA
pca=PCA(n_components=3)
fit=pca.fit(iris.data)
print('解释方差:%s' %fit.explained_variance_ratio_)
print(fit.components_)
解释方差:[0.92461872 0.05306648 0.01710261]
[[ 0.36138659 -0.08452251  0.85667061  0.3582892 ]
 [ 0.65658877  0.73016143 -0.17337266 -0.07548102]
 [-0.58202985  0.59791083  0.07623608  0.54583143]]

特征重要性

from sklearn.ensemble import ExtraTreesClassifier
model=ExtraTreesClassifier()
fit=model.fit(iris.data,iris.target)
print(fit.feature_importances_)
[0.10698562 0.06329292 0.42825402 0.40146743]

选择模型

评估算法

分离训练数据集和评估数据集

K折交叉验证分离

弃一交叉验证分离

重复随机评估、训练数据集分离

分离训练数据集和评估数据集

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

X_train,X_test,Y_train,Y_test=train_test_split(iris.data,iris.target,test_size=0.33,random_state=4)
model=LogisticRegression()
model.fit(X_train,Y_train)
model.score(X_test,Y_test)
0.98

K折交叉验证分离

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression

kfold=KFold(n_splits=10,random_state=7,shuffle=True)
results=cross_val_score(LogisticRegression(solver='lbfgs',max_iter=1000),iris.data,iris.target,cv=kfold)
print(results)
print(results.mean())
print(results.std())
[0.86666667 0.86666667 1.         1.         1.         1.
 1.         0.93333333 1.         1.        ]
0.9666666666666668
0.053748384988656986

弃一交叉验证分离

from sklearn.model_selection import LeaveOneOut
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression

model=LogisticRegression(solver='lbfgs',max_iter=1000)
loocv=LeaveOneOut()
results=cross_val_score(model,iris.data,iris.target,cv=loocv)
print(results)
print(results.mean())
print(results.std())
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1.
 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1.]
0.9666666666666667
0.17950549357115014

重复分离评估数据集与训练数据集

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_val_score

kfold=ShuffleSplit(n_splits=10,test_size=0.33,random_state=7)
results=cross_val_score(LogisticRegression(solver='lbfgs',max_iter=1000),iris.data,iris.target,cv=kfold)
print(results)
print(results.mean())
print(results.std())
[0.92 0.94 0.94 0.9  0.92 1.   0.98 0.98 0.96 0.98]
0.952
0.031240998703626604

算法评估矩阵

分类算法评估矩阵

分类准确度
对数损失函数
AUC图
混淆矩阵
分类报告

分类准确度

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_val_score

kfold=ShuffleSplit(n_splits=10,test_size=0.33,random_state=7)
results=cross_val_score(LogisticRegression(solver='lbfgs',max_iter=1000),iris.data,iris.target,cv=kfold)
print(results)
print(results.mean())
print(results.std())
[0.92 0.94 0.94 0.9  0.92 1.   0.98 0.98 0.96 0.98]
0.952
0.031240998703626604

对数损失函数

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_val_score
#scoring指定为对数损失函数
kfold=ShuffleSplit(n_splits=10,test_size=0.33,random_state=7)
results=cross_val_score(LogisticRegression(solver='lbfgs',max_iter=1000),iris.data,iris.target,cv=kfold,scoring='neg_log_loss')
print(results)
print(results.mean())
print(results.std())
[-0.20996844 -0.17826908 -0.17633721 -0.18893534 -0.16890273 -0.11502008
 -0.11949119 -0.13442667 -0.15348432 -0.13497036]
-0.1579805422237223
0.02993380620566406

AUC图

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score

kfold=KFold(n_splits=10,random_state=7,shuffle=True)
results=cross_val_score(LogisticRegression(solver='lbfgs',max_iter=1000),iris.data,iris.target,cv=kfold)
print(results)
print(results.mean())
print(results.std())
[0.86666667 0.86666667 1.         1.         1.         1.
 1.         0.93333333 1.         1.        ]
0.9666666666666668
0.053748384988656986

混淆矩阵

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split

X_train,X_test,Y_train,Y_test=train_test_split(iris.data,iris.target,test_size=0.33,random_state=4)
model=LogisticRegression(solver='lbfgs',max_iter=1000)
model.fit(X_train,Y_train)
matrix=confusion_matrix(Y_test,y_pred=model.predict(X_test))
columns=['0','1','2']
import pandas as pd
dataframe=pd.DataFrame(matrix,columns=columns)
dataframe
0 1 2
0 23 0 0
1 0 11 1
2 0 0 15

分类报告

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split

X_train,X_test,Y_train,Y_test=train_test_split(iris.data,iris.target,test_size=0.33,random_state=4)
model=LogisticRegression(solver='lbfgs',max_iter=1000)
model.fit(X_train,Y_train)
report=classification_report(y_true=Y_train,y_pred=model.predict(X_train))
print(report)
              precision    recall  f1-score   support

           0       1.00      1.00      1.00        27
           1       1.00      0.95      0.97        38
           2       0.95      1.00      0.97        35

    accuracy                           0.98       100
   macro avg       0.98      0.98      0.98       100
weighted avg       0.98      0.98      0.98       100

回归算法矩阵

平均绝对误差MAE


均方误差MSE


决定系数 R 2 R^2 R2

平均绝对误差

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

kfold=KFold(n_splits=10,random_state=7,shuffle=True)
model=LogisticRegression(solver='lbfgs',max_iter=1000)
results=cross_val_score(model,iris.data,iris.target,cv=kfold,scoring='neg_mean_absolute_error')
print(results)
print(results.mean())
print(results.std())
[-0.13333333 -0.13333333 -0.         -0.         -0.         -0.
 -0.         -0.06666667 -0.         -0.        ]
-0.03333333333333333
0.05374838498865701

均方误差

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

kfold=KFold(n_splits=10,random_state=7,shuffle=True)
model=LogisticRegression(solver='lbfgs',max_iter=1000)
results=cross_val_score(model,iris.data,iris.target,cv=kfold,scoring='neg_mean_squared_error')
print(results)
print(results.mean())
print(results.std())
[-0.13333333 -0.13333333 -0.         -0.         -0.         -0.
 -0.         -0.06666667 -0.         -0.        ]
-0.03333333333333333
0.05374838498865701

决定系数 R 2 R^2 R2

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

kfold=KFold(n_splits=10,random_state=7,shuffle=True)
model=LogisticRegression(solver='lbfgs',max_iter=1000)
results=cross_val_score(model,iris.data,iris.target,cv=kfold,scoring='r2')
print(results)
print(results.mean())
print(results.std())
[0.74137931 0.73684211 1.         1.         1.         1.
 1.         0.9        1.         1.        ]
0.9378221415607986
0.10367057339437748

审查分类算法

线性算法

逻辑回归
线性判别分析

非线性算法

K近邻
贝特斯分类器
分类与回归树
支持向量机

线性算法

逻辑回归

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression

results=cross_val_score(LogisticRegression(max_iter=1000),iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.9666666666666668

线性判别分析

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

results=cross_val_score(LinearDiscriminantAnalysis(),iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.9800000000000001
非线性算法

K近邻算法

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.neighbors import KNeighborsClassifier

results=cross_val_score(KNeighborsClassifier(),iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.9533333333333334

贝叶斯分类器

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB

results=cross_val_score(GaussianNB(),iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.9533333333333334

分类与回归树

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeClassifier

results=cross_val_score(DecisionTreeClassifier(),iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.96

支持向量机

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC
results=cross_val_score(SVC(),iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.9600000000000002

审查回归算法

线性算法

线性回归算法
岭回归算法
套索回归算法
弹性网络回归算法

非线性算法

K近邻算法(KNN)
分类与回归树算法
支持向量机(SVM)

线性算法

线性回归算法

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression

results=cross_val_score(LinearRegression(),iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.9146928063470222

岭回归算法

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import Ridge
results=cross_val_score(Ridge(),iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.9151100717792608

套索回归算法

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import Lasso
results=cross_val_score(Lasso(),iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.3710759235590891

弹性网络回归算法

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import ElasticNet

results=cross_val_score(ElasticNet(),iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.6892616691679934
非线性算法

K近邻算法

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.neighbors import KNeighborsRegressor

results=cross_val_score(KNeighborsRegressor(),iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.9458788291858257

分类与回归树

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeRegressor

results=cross_val_score(DecisionTreeRegressor(),iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.9117332123411979

支持向量机

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVR
results=cross_val_score(SVR(),iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.9351772150972707

算法比较

models={
     }
models['LR']=LogisticRegression(max_iter=1000)
models['LDA']=LinearDiscriminantAnalysis()
models['KNN']=KNeighborsClassifier()
models['CART']=DecisionTreeClassifier()
models['NB']=GaussianNB()
models['SVM']=SVC()

results=[]
for key in models:
    result=cross_val_score(models[key],iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
    results.append(result)
    msg='%s:%.3f(%.3f)'%(key,result.mean(),result.std())
    print(msg)

from matplotlib import pyplot
fig=pyplot.figure()
fig.suptitle('comparison')
ax=fig.add_subplot(111)
pyplot.boxplot(results)
ax.set_xticklabels(models.keys())
LR:0.967(0.054)
LDA:0.980(0.031)
KNN:0.953(0.052)
CART:0.947(0.065)
NB:0.953(0.067)
SVM:0.960(0.053)





[Text(1, 0, 'LR'),
 Text(2, 0, 'LDA'),
 Text(3, 0, 'KNN'),
 Text(4, 0, 'CART'),
 Text(5, 0, 'NB'),
 Text(6, 0, 'SVM')]

python机器学习《机器学习Python实践》整理,sklearn库应用详解_第7张图片

自动流程

数据准备和生成模型的pipeline

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
model=Pipeline([('std',StandardScaler()),('lin',LinearDiscriminantAnalysis())])
results=cross_val_score(model,iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.9800000000000001

特征选择和生成模型的pipeline

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import FeatureUnion
from sklearn.pipeline import Pipeline
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest
from sklearn.pipeline import Pipeline
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
fea=[('pca',PCA()),('select',SelectKBest(k=3))]
model=Pipeline([('fea',FeatureUnion(fea)),('log',LogisticRegression(max_iter=1000))])
results=cross_val_score(model,iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
results.mean()
0.96

优化模型

集成算法

袋装算法

袋装决策树

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier

model=BaggingClassifier(base_estimator=DecisionTreeClassifier(),n_estimators=100,random_state=7)
result=cross_val_score(model,iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
print(result)
result.mean()
[0.86666667 0.86666667 1.         1.         1.         1.
 1.         0.93333333 0.93333333 1.        ]





0.96

随机森林

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier

model=RandomForestClassifier(n_estimators=100,random_state=7,max_features=2)
result=cross_val_score(model,iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
print(result)
result.mean()
[0.86666667 0.86666667 1.         1.         0.93333333 1.
 1.         0.93333333 0.93333333 1.        ]





0.9533333333333334

极端森林

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import ExtraTreesClassifier

model=ExtraTreesClassifier(n_estimators=100,random_state=7,max_features=2)
result=cross_val_score(model,iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
print(result)
result.mean()
[0.86666667 0.86666667 1.         1.         0.93333333 1.
 1.         0.93333333 0.93333333 0.93333333]





0.9466666666666667

提升算法

AdaBoost

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import AdaBoostClassifier

model=AdaBoostClassifier(n_estimators=100,random_state=7)
result=cross_val_score(model,iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
print(result)
result.mean()
[0.93333333 0.86666667 1.         1.         0.93333333 1.
 1.         0.93333333 1.         1.        ]





0.9666666666666666

随机梯度提升

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import GradientBoostingClassifier

model=GradientBoostingClassifier(n_estimators=100,random_state=7)
result=cross_val_score(model,iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
print(result)
result.mean()
[0.93333333 0.8        1.         1.         1.         1.
 1.         0.93333333 0.93333333 1.        ]





0.96

投票算法

from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import VotingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression

model=VotingClassifier(estimators=[('cart',DecisionTreeClassifier()),('logistic',LogisticRegression(max_iter=1000)),('svm',SVC())])
result=cross_val_score(model,iris.data,iris.target,cv=KFold(n_splits=10,random_state=7,shuffle=True))
print(result)
result.mean()
[0.86666667 0.86666667 1.         1.         1.         1.
 1.         0.93333333 1.         1.        ]





0.9666666666666668

算法调参

网格搜索优化参数

from sklearn.linear_model import Ridge
from sklearn.model_selection import GridSearchCV

model=Ridge()
param_grid={
     'alpha':[1,0.1,0.01,0.001,0]}
grid=GridSearchCV(estimator=model,param_grid=param_grid)
grid.fit(iris.data,iris.target)
print(grid.best_score_)
print(grid.best_estimator_.alpha)
0.3225607248900085
0

随机搜索优化参数

from sklearn.linear_model import Ridge
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import uniform
model=Ridge()
param_grid={
     'alpha':uniform}
grid=RandomizedSearchCV(estimator=model,param_distributions=param_grid,n_iter=100,random_state=7)
grid.fit(iris.data,iris.target)
print(grid.best_score_)
print(grid.best_estimator_.alpha)
0.32255899144910904
0.0014268805627581926

结果部署

持久化加载模型

通过pickle序列化和反序列化机器学习的模型

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from pickle import dump
from pickle import load

validation_size=0.33
seed=4
X_train,X_test,Y_train,Y_test=train_test_split(iris.data,iris.target,test_size=validation_size,random_state=seed)

model=LogisticRegression(max_iter=1000)
model.fit(X_train,Y_train)

model_file='finalized_model.sav'
with open(model_file,'wb') as model_f:
    dump(model,model_f)#序列化
    
with open(model_file,'rb') as model_f:
    load_model=load(model_f)
    result=load_model.score(X_test,Y_test)#反序列化
result
0.98

通过joblib序列化和反序列化机器学习的模型

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from joblib import dump
from joblib import load

validation_size=0.33
seed=4
X_train,X_test,Y_train,Y_test=train_test_split(iris.data,iris.target,test_size=validation_size,random_state=seed)

model=LogisticRegression(max_iter=1000)
model.fit(X_train,Y_train)

model_file='finalized_model_joblib.sav'
with open(model_file,'wb') as model_f:
    dump(model,model_f)#序列化
    
with open(model_file,'rb') as model_f:
    load_model=load(model_f)
    result=load_model.score(X_test,Y_test)#反序列化
result
0.98

你可能感兴趣的:(机器学习,sklearn,python,机器学习)