[PyTorch 学习笔记] 3.2 卷积层

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_convolution.py

这篇文章主要介绍了 PyTorch 中常用的卷积层,包括 3 个部分。

1D/2D/3D 卷积

卷积有一维卷积、二维卷积、三维卷积。一般情况下,卷积核在几个维度上滑动,就是几维卷积。比如在图片上的卷积就是二维卷积。

一维卷积

[PyTorch 学习笔记] 3.2 卷积层_第1张图片

二维卷积

[PyTorch 学习笔记] 3.2 卷积层_第2张图片

三维卷积

[PyTorch 学习笔记] 3.2 卷积层_第3张图片

二维卷积:nn.Conv2d()

nn.Conv2d(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1,
                 bias=True, padding_mode='zeros')

这个函数的功能是对多个二维信号进行二维卷积,主要参数如下:

  • in_channels:输入通道数
  • out_channels:输出通道数,等价于卷积核个数
  • kernel_size:卷积核尺寸
  • stride:步长
  • padding:填充宽度,主要是为了调整输出的特征图大小,一般把 padding 设置合适的值后,保持输入和输出的图像尺寸不变。
  • dilation:空洞卷积大小,默认为 1,这时是标准卷积,常用于图像分割任务中,主要是为了提升感受野
  • groups:分组卷积设置,主要是为了模型的轻量化,如在 ShuffleNet、MobileNet、SqueezeNet 中用到
  • bias:偏置

卷积尺寸计算

简化版卷积尺寸计算

这里不考虑空洞卷积,假设输入图片大小为 $ I \times I$,卷积核大小为 k × k k \times k k×k,stride 为 s s s,padding 的像素数为 p p p,图片经过卷积之后的尺寸 $ O $ 如下:

O = I − k + 2 × p s + 1 O = \displaystyle\frac{I -k + 2 \times p}{s} +1 O=sIk+2×p+1

下面例子的输入图片大小为 5 × 5 5 \times 5 5×5,卷积大小为 3 × 3 3 \times 3 3×3,stride 为 1,padding 为 0,所以输出图片大小为 5 − 3 + 2 × 0 1 + 1 = 3 \displaystyle\frac{5 -3 + 2 \times 0}{1} +1 = 3 153+2×0+1=3

[PyTorch 学习笔记] 3.2 卷积层_第4张图片

完整版卷积尺寸计算

完整版卷积尺寸计算考虑了空洞卷积,假设输入图片大小为 $ I \times I$,卷积核大小为 k × k k \times k k×k,stride 为 s s s,padding 的像素数为 p p p,dilation 为 d d d,图片经过卷积之后的尺寸 $ O $ 如下:。

O = I − d × ( k − 1 ) + 2 × p − 1 s + 1 O = \displaystyle\frac{I - d \times (k-1) + 2 \times p -1}{s} +1 O=sId×(k1)+2×p1+1

卷积网络示例

这里使用 input*channel 为 3,output_channel 为 1 ,卷积核大小为 3 × 3 3 \times 3 3×3 的卷积核nn.Conv2d(3, 1, 3),使用nn.init.xavier_normal*()方法初始化网络的权值。代码如下:

import os
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from matplotlib import pyplot as plt
from common_tools import transform_invert, set_seed

set_seed(3)  # 设置随机种子

# ================================= load img ==================================
path_img = os.path.join(os.path.dirname(os.path.abspath(__file__)), "imgs", "lena.png")
print(path_img)
img = Image.open(path_img).convert('RGB')  # 0~255

# convert to tensor
img_transform = transforms.Compose([transforms.ToTensor()])
img_tensor = img_transform(img)
# 添加 batch 维度
img_tensor.unsqueeze_(dim=0)    # C*H*W to B*C*H*W

# ================================= create convolution layer ==================================

# ================ 2d
flag = 1
# flag = 0
if flag:
    conv_layer = nn.Conv2d(3, 1, 3)   # input:(i, o, size) weights:(o, i , h, w)
    # 初始化卷积层权值
    nn.init.xavier_normal_(conv_layer.weight.data)
	# nn.init.xavier_uniform_(conv_layer.weight.data)
    # calculation
    img_conv = conv_layer(img_tensor)

# ================ transposed
# flag = 1
flag = 0
if flag:
    conv_layer = nn.ConvTranspose2d(3, 1, 3, stride=2)   # input:(input_channel, output_channel, size)
    # 初始化网络层的权值
    nn.init.xavier_normal_(conv_layer.weight.data)

    # calculation
    img_conv = conv_layer(img_tensor)

# ================================= visualization ==================================
print("卷积前尺寸:{}\n卷积后尺寸:{}".format(img_tensor.shape, img_conv.shape))
img_conv = transform_invert(img_conv[0, 0:1, ...], img_transform)
img_raw = transform_invert(img_tensor.squeeze(), img_transform)
plt.subplot(122).imshow(img_conv, cmap='gray')
plt.subplot(121).imshow(img_raw)
plt.show()

卷积前后的图片如下 (左边是原图片,右边是卷积后的图片):

[PyTorch 学习笔记] 3.2 卷积层_第5张图片

当改为使用`nn.init.xavier_uniform_()`方法初始化网络的权值时,卷积前后图片如下:
[PyTorch 学习笔记] 3.2 卷积层_第6张图片

我们通过`conv_layer.weight.shape`查看卷积核的 shape 是`(1, 3, 3, 3)`,对应是`(output_channel, input_channel, kernel_size, kernel_size)`。所以第一个维度对应的是卷积核的个数,每个卷积核都是`(3,3,3)`。虽然每个卷积核都是 3 维的,执行的却是 2 维卷积。下面这个图展示了这个过程。
[PyTorch 学习笔记] 3.2 卷积层_第7张图片

也就是每个卷积核在 input_channel 维度再划分,这里 input_channel 为 3,那么这时每个卷积核的 shape 是`(3, 3)`。3 个卷积核在输入图像的每个 channel 上卷积后得到 3 个数,把这 3 个数相加,再加上 bias,得到最后的一个输出。
[PyTorch 学习笔记] 3.2 卷积层_第8张图片

转置卷积:nn.ConvTranspose()

转置卷积又称为反卷积 (Deconvolution) 和部分跨越卷积 (Fractionally strided Convolution),用于对图像进行上采样。

正常卷积如下:

[PyTorch 学习笔记] 3.2 卷积层_第9张图片

原始的图片尺寸为 $4 \times 4$,卷积核大小为 $3 \times 3$,$padding =0$,$stride = 1$。由于卷积操作可以通过矩阵运算来解决,因此原始图片可以看作 $16 \times 1$ 的矩阵 $I_{16 \times 1}$,卷积核可以看作 $4 \times 16$ 的矩阵 $K_{4 \times 16}$,那么输出是 $K_{4 \times 16} \times I_{16 \times 1} = O_{4 \times 1}$ 。

转置卷积如下:

[PyTorch 学习笔记] 3.2 卷积层_第10张图片

原始的图片尺寸为 $2 \times 2$,卷积核大小为 $3 \times 3$,$padding =0$,$stride = 1$。由于卷积操作可以通过矩阵运算来解决,因此原始图片可以看作 $4 \times 1$ 的矩阵 $I_{4 \times 1}$,卷积核可以看作 $4 \times 16$ 的矩阵 $K_{16 \times 4}$,那么输出是 $K_{16 \times 4} \times I_{4 \times 1} = O_{16 \times 1}$ 。

正常卷积核转置卷积矩阵的形状刚好是转置关系,因此称为转置卷积,但里面的权值不是一样的,卷积操作也是不可逆的。

PyTorch 中的转置卷积函数如下:

nn.ConvTranspose2d(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, output_padding=0, groups=1, bias=True,
                 dilation=1, padding_mode='zeros')

和普通卷积的参数基本相同,不再赘述。

转置卷积尺寸计算

简化版转置卷积尺寸计算

这里不考虑空洞卷积,假设输入图片大小为 $ I \times I$,卷积核大小为 k × k k \times k k×k,stride 为 s s s,padding 的像素数为 p p p,图片经过卷积之后的尺寸 $ O $ 如下,刚好和普通卷积的计算是相反的:

O = ( I − 1 ) × s + k O = (I-1) \times s + k O=(I1)×s+k

完整版简化版转置卷积尺寸计算

O = ( I − 1 ) × s − 2 × p + d × ( k − 1 ) + o u t _ p a d d i n g + 1 O = (I-1) \times s - 2 \times p + d \times (k-1) + out\_padding + 1 O=(I1)×s2×p+d×(k1)+out_padding+1

转置卷积代码示例如下:

import os
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from matplotlib import pyplot as plt
from common_tools import transform_invert, set_seed

set_seed(3)  # 设置随机种子

# ================================= load img ==================================
path_img = os.path.join(os.path.dirname(os.path.abspath(__file__)), "imgs", "lena.png")
print(path_img)
img = Image.open(path_img).convert('RGB')  # 0~255

# convert to tensor
img_transform = transforms.Compose([transforms.ToTensor()])
img_tensor = img_transform(img)
# 添加 batch 维度
img_tensor.unsqueeze_(dim=0)    # C*H*W to B*C*H*W

# ================================= create convolution layer ==================================

# ================ 2d
# flag = 1
flag = 0
if flag:
    conv_layer = nn.Conv2d(3, 1, 3)   # input:(i, o, size) weights:(o, i , h, w)
    # 初始化卷积层权值
    nn.init.xavier_normal_(conv_layer.weight.data)
    # nn.init.xavier_uniform_(conv_layer.weight.data)

    # calculation
    img_conv = conv_layer(img_tensor)

# ================ transposed
flag = 1
# flag = 0
if flag:
    conv_layer = nn.ConvTranspose2d(3, 1, 3, stride=2)   # input:(input_channel, output_channel, size)
    # 初始化网络层的权值
    nn.init.xavier_normal_(conv_layer.weight.data)

    # calculation
    img_conv = conv_layer(img_tensor)

# ================================= visualization ==================================
print("卷积前尺寸:{}\n卷积后尺寸:{}".format(img_tensor.shape, img_conv.shape))
img_conv = transform_invert(img_conv[0, 0:1, ...], img_transform)
img_raw = transform_invert(img_tensor.squeeze(), img_transform)
plt.subplot(122).imshow(img_conv, cmap='gray')
plt.subplot(121).imshow(img_raw)
plt.show()

转置卷积前后图片显示如下,左边原图片的尺寸是 (512, 512),右边转置卷积后的图片尺寸是 (1025, 1025)。

[PyTorch 学习笔记] 3.2 卷积层_第11张图片

转置卷积后的图片一般都会有棋盘效应,像一格一格的棋盘,这是转置卷积的通病。

关于棋盘效应的解释以及解决方法,推荐阅读Deconvolution And Checkerboard Artifacts。

参考资料

  • 深度之眼 PyTorch 框架班

如果你觉得这篇文章对你有帮助,不妨点个赞,让我有更多动力写出好文章。

你可能感兴趣的:(Pytorch,卷积,深度学习,pytorch,神经网络)