- JavaScript 进阶之路:探索高级特性和最佳实践
不在··
原型模式
面向对象的三大特征封装继承多态构造函数什么是构造函数通过new关键字调用一个函数的时候,这个函数就是构造函数。构造函数和普通函数的区别调用方式不同普通函数只用函数名调用构造函数通过new关键字调用返回值不同普通函数的返回值是函数体内return的结果构造函数的返回值是new关键字生成的对象JSPrototype原型对象所有的函数都有一个原型对象Prototype,并且只有函数才拥有原型对象Prot
- 二分查找算法
mcharleylei
算法python
目录1、概述2、代码实现(1)递归实现(2)非递归实现1、概述二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查
- 图像分类与识别的自组织特征映射网络实践
无声远望
本文还有配套的精品资源,点击获取简介:自组织特征映射网络(SOFM)是一种无监督学习模型,适用于图像处理中的预处理、特征提取和分类识别。通过在MATLAB中实现SOFM,可以进行数据预处理、特征提取、网络训练、分类与识别以及优化评估。本内容涵盖了SOFM网络的应用步骤、训练过程、参数调整和性能评估,旨在提供图像处理问题的解决方案。1.自组织特征映射网络简介1.1自组织特征映射网络概述自组织特征映射
- 【第四天】零基础入门刷题Python-算法篇-数据结构与算法的介绍-两种常见的递归算法(持续更新)
Long_poem
python算法开发语言
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Python数据结构与算法的详细介绍1.Python中的常用的搜索算法2.两种常见的递归算法3.两种详细的递归算法代码1)斐波那契数列2)阶乘总结前言提示:这里可以添加本文要记录的大概内容:第一天Python数据结构与算法的详细介绍第二天五种常见的排序算法第三天两种常见的搜索算法第四天两种常见的递归算法第五天一种常见的
- 情感分析常见算法与模型及实现步骤
计算机软件程序设计
知识科普算法情感分析机器学习
【1】常见算法与模型情感分析(SentimentAnalysis)是一种自然语言处理(NLP)技术,用于识别和提取文本中的主观信息,如情绪、态度和意见。常见的算法和模型包括以下几种:传统机器学习方法朴素贝叶斯(NaiveBayes)基于贝叶斯定理,假设特征之间相互独立。计算简单,适用于大规模数据集。常用于文本分类任务。支持向量机(SVM)通过寻找最优超平面来划分不同的类别。在高维空间中表现良好,适
- 读论文 Situated Instruction Following
MhZhou0412
人工智能深度学习python
研究背景:在传统的指令跟随范式中,代理独自在一个空房子里行动,导致语言使用既简单又人为“完整”。与此相反,我们提出了情境指令跟随(SIF),该方法拥抱真实世界通信中固有的不完全和模糊性,具有人的物理存在。情境指令的意义通过人类的过去行动和预期未来行为自然展开。在我们的设置中,指令具有以下特征:(1)模糊不清,(2)具有时间演变的意图,(3)可以通过代理的动态行动更精确地解释。SIF中的任务包括两个
- 图神经网络系列论文阅读DAY1:《Predicting Tweet Engagement with Graph Neural Networks》
feifeikon
神经网络论文阅读人工智能
摘要翻译:社交网络是全球范围内分享内容的重要在线渠道之一。在这种背景下,预测一篇帖子在互动方面是否会产生影响,对于推动这些媒体的盈利利用至关重要。在现有研究中,许多方法通过利用帖子的直接特征来解决这一问题,这些特征通常与文本内容以及发布该帖子的用户相关。在本文中,我们认为互动的增加还与另一个关键因素相关,即社交媒体用户发布的帖子之间的语义关联。因此,我们提出了一种基于图神经网络(GraphNeur
- OpenCV实战技术应用
yzx991013
OpenCV基础全集opencv人工智能计算机视觉
10.0角点检测应用技术实现,使用SIFT算法进行特征点检测并绘制。结果:实现过程:解析过程:1.导入模块:importcv2:导入opencv库,用于图像处理操作,包括图像读取、特征提取、图像绘制、匹配等。importnumpyasnp:导入numpy库,用于处理数组数据,在特征描述符的存储和处理中可能会用到。2.函数定义:sift_tz():功能:使用SIFT算法进行特征点检测并绘制。实现:i
- JavaScript常用的一些代码段
东锋1.3
javascriptjavascript开发语言ecmascript
带有重复项使用递归。对于给定字符串中的每个字母,为字母创建字谜。使用map()将字母与每部分字谜组合,然后使用reduce()将所有字谜组合到一个数组中,最基本情况是字符串长度等于2或1。constanagrams=str=>{if(str.lengthacc.concat(anagrams(str.slice(0,i)+str.slice(i+1)).map(val=>letter+val)),
- PointNet++改进策略 :模块改进 | PointCAT, 使用交叉注意力机制来提升3D点云任务中提升模型精度
我是瓦力
PointNet++改进策略3d深度学习人工智能计算机视觉transformer
论文题目:PointCAT:Cross-AttentionTransformerforPointCloud通讯地址:南京理工大学代码地址:https://github.com/xincheng-yang/PointCAT.PointCAT架构:PointCAT提出了一种基于交叉注意力机制的Transformer网络,专门用于点云表示。它通过两个不同的多尺度特征分支,利用交叉注意力机制来交换信息。通
- 计算机视觉:卷积核
每天五分钟玩转人工智能
计算机视觉计算机视觉深度学习人工智能机器学习卷积神经网络
本文重点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。在卷积神经网络中,卷积核是网络的核心组件之一。通过不断堆叠卷积层和池化层,可以逐渐提取出更高级别的特征,从而实现更复杂的任务。卷积神经网络中的卷积核可以通过反向传播算法进行训练和优化,使其能够自适应地学习输入数据中的特征。因此,卷积神经网络在图像
- 清华大学提出Pointformer:基于Transformer的3D目标检测
Amusi(CVer)
计算机视觉论文速递Transformer3D目标检测深度学习计算机视觉机器学习人工智能自动驾驶
没错!Transformer的"魔爪"已经伸向3D目标检测了。Pointformer:用于3D点云的特征学习backbone,可结合并提高现有的3D点云目标检测网络性能,如VoteNet、PointRCNN和CBGS等。注:文末附【Transformer】和【3D目标检测】学习交流群Transformer最近在3D点云方向应用的工作可以看一下:牛津大学等提出:PointTransformer清华大
- InceptionV1实现猴痘病识别案例
小叮当爱咖啡
计算机视觉人工智能神经网络深度学习
本文为为365天深度学习训练营内部文章原作者:K同学啊InceptionModule是InceptionV1的核心组成单元,提出了卷积层的并行结构,实现了在同一层就可以提取不同的特征为了改善计算量大的问题,使用了1*1的卷积核实现降维操作,以此来减小网络的参数量与计算量1*1卷积核的作用:降低输入特征图的通道数,减小网络的参数量与计算量最后InceptionModule基本由1*1卷积,3*3卷积
- 【人工智能时代】- 开源向量数据库比较:Chroma, Milvus, Faiss,Weaviate
xiaoli8748_软件开发
人工智能时代人工智能开源数据库
语义搜索和检索增强生成(RAG)正在彻底改变我们的在线交互方式。实现这些突破性进展的支柱就是向量数据库。选择正确的向量数据库能是一项艰巨的任务。本文为你提供四个重要的开源向量数据库之间的全面比较,希望你能够选择出最符合自己特定需求的数据库。什么是向量数据库?向量数据库是一种将数据存储为高维向量的数据库,高维向量是特征或属性的数学表示。每个向量都有一定数量的维度,根据数据的复杂性和粒度,可以从数十到
- 【深度学习】常见模型-卷积神经网络(Convolutional Neural Networks, CNN)
IT古董
人工智能深度学习机器学习深度学习cnn人工智能
卷积神经网络(CNN)概念简介卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一种专门用于处理数据具有网格状拓扑结构(如图像、语音)的深度学习模型。它通过卷积操作从输入数据中提取局部特征,并逐层构建更复杂的特征表示,广泛应用于图像分类、目标检测、语音识别等领域。关键组成部分卷积层(ConvolutionalLayer)使用卷积核(滤波器)在输入上滑动,提取局部特征。
- 什么是CSP?全面了解内容安全策略(Content Security Policy)
山禾女鬼001
网络协议网络安全
CSP(ContentSecurityPolicy)是一种网络安全机制,旨在减少或消除跨站脚本(XSS)和数据注入攻击。它通过提供一种允许网站管理员控制哪些资源可以在网页中加载、执行,从而有效提升网站的安全性。CSP的基本概念CSP的核心思想是,通过限制网页可以加载的外部资源,防止恶意脚本通过第三方资源注入到网站中。具体来说,CSP通过一个名为Content-Security-Policy的HTT
- 数据可视化期末复习-简答题
熊假猫威XStar
信息可视化数据分析数据挖掘计算机视觉数据可视化期末大学生
数据可视化的标准实用性完整性真实性艺术性交互性数据可视化的目标通过数据可视化有效呈现数据中的重要特征通过数据可视化揭示事物内部的规律和数据之间的内在联系通过数据可视化辅助人们理解事物的概念和过程通过数据可视化对模拟和测量进行质量监控通过数据可视化提高科研开发效率数据可视化的过程1.通过仪器采样、调查记录、模拟计算等方法进行数据采集2.对采集来的数据进行处理和变换,提高数据的质量3.把不同数据之间的
- C语言青蛙跳台阶问题
共享家9527
c语言
在算法学习中,青蛙跳台阶问题是一个经典的递归和动态规划入门案例。它通过简单的场景,揭示了复杂的算法思想,非常适合初学者理解递归与动态规划的核心概念。一、问题描述一只青蛙要跳上n级台阶,每次它可以跳1级或者2级台阶。那么,青蛙跳上n级台阶总共有多少种不同的跳法呢?二、解题思路递归思路:-对于第n级台阶,青蛙到达它的方式要么是从第n-1级台阶跳1级上来,要么是从第n-2级台阶跳2级上来。-所以,跳上n
- 数据结构与算法再探(六)动态规划
刀客123
数据结构与算法动态规划算法
目录动态规划(DynamicProgramming,DP)动态规划的基本思想动态规划的核心概念动态规划的实现步骤动态规划实例1、爬楼梯c++递归(超时)需要使用记忆化递归循环2、打家劫舍3、最小路径和4、完全平方数5、最长公共子序列6、0-1背包问题总结动态规划(DynamicProgramming,DP)释义:动态规划是一种解决复杂问题的优化方法,通过将大问题拆解成小问题,逐步解决小问题,最终得
- PAT乙级真题 — 1063 计算谱半径(java)
黄昏岭
python算法开发语言
在数学中,矩阵的“谱半径”是指其特征值的模集合的上确界。换言之,对于给定的n个复数空间的特征值{a1+b1i,⋯,an+bni},它们的模为实部与虚部的平方和的开方,而“谱半径”就是最大模。现在给定一些复数空间的特征值,请你计算并输出这些特征值的谱半径。输入格式:输入第一行给出正整数N(≤10000)是输入的特征值的个数。随后N行,每行给出1个特征值的实部和虚部,其间以空格分隔。注意:题目保证实部
- CNN+LSTM+AM研究方向初尝试
qzhqbb
勇闯学术圈机器学习cnnlstm人工智能笔记
CNN+LSTM+AM研究方向初尝试简单介绍CNNCNN的基本结构卷积层(ConvolutionalLayer):该层通过卷积操作提取输入数据的特征。卷积操作使用多个卷积核(滤波器)对输入图像进行局部感知,从而识别出边缘、纹理等基本特征。卷积层的输出称为特征图(FeatureMap)。激活层(ActivationLayer):常用的激活函数包括ReLU(线性整流单元),用于引入非线性,使网络能够学
- 抽根烟顺便研究下空间划分技术
你一身傲骨怎能输
计算机图形学空间划分技术
空间划分空间划分是一种有效的技术,用于优化碰撞检测和其他空间查询操作。通过将空间划分为多个区域,可以显著减少需要进行碰撞检测的物体数量,从而提高性能。以下是几种常见的空间划分方法:四叉树(Quadtree)定义四叉树是一种数据结构,用于将二维空间递归划分为四个象限(子区域)。每个节点代表一个特定的区域,子节点则代表该区域的四个子区域。这种结构使得空间的管理和查询变得更加高效。适用场景四叉树特别适用
- 自定义类型 - 联合
仟濹
C语言学习笔记算法笔记c语言c++c#
2024-10-13-笔记-29作者(Author):郑龙浩/仟濹(CSDN账号名)联合(共用体)①联合的概念在C语言中,联合(Union)是一种自定义类型,这种(联合)类型定义的变量包含一系列的成员,其显著特征是这些成员共享(或公用)同一块内存空间,这意味着在同一时间点上,这块内存空间只能存储联合中某个成员的数据(因此联合也被称为共用体)。联合需要注意的问题:联合类型的成员共享同一个内存空间,因
- spss因子分析过程中,旋转载荷平方和累积有点低咋办怎么调整
xiamu_CDA
python
SPSS因子分析过程中,旋转载荷平方和累积有点低咋办?怎么调整?在数据分析领域,因子分析是一项重要的统计技术,尤其在心理学、社会学、市场营销等领域中应用广泛。它通过将多个变量简化为少数几个潜在因子,帮助研究者理解变量之间的内在结构。然而,在实际操作过程中,我们常常会遇到一些棘手的问题,比如旋转载荷平方和累积值偏低。这不仅会影响模型的解释力,还可能导致研究结果的可靠性大打折扣。那么,当我们在使用SP
- 嵌入式音视频开发——视频篇(三)
程序猿玖月柒
音视频音视频
本笔记来源于学习韦东山团队课程,自己选择性摘抄加深记忆和学习的效果。帧率与时间戳帧率(framerate)是指视频播放中每秒显示的图像帧数。测量单位为“每秒显示帧数”(framepersecond,FPS)或“赫兹”,一般来说FPS用于描述影片、电子绘图或游戏每秒播放多少帧。人类视觉的时间敏感性和分辨率根据视觉刺激的类型和特征而变化,并且在个体之间是不同的。由于人类眼睛的特殊生理结构,如果所看画面
- Transformer的linear和softmax
编码浪子
AItransformer机器学习人工智能
线性层(LinearLayer)场景假设我们现在有一个包含许多特征的向量,比如描述一本书的内容、风格、作者、逻辑等信息。你想要根据这些特征预测这本书属于哪个类别,如小说、科幻、历史等。线性层的作用就是帮助你将这些特征转换成一个更简单的形式,使得你可以更容易地做出分类决策。解释特征组合:线性层接收来自解码器最后一层的输出,这个输出是一个高维向量,包含了关于输入序列的丰富信息。权重矩阵:线性层内部有一
- Scala语言的循环实现
Code侠客行
包罗万象golang开发语言后端
Scala语言的循环实现在编程中,循环是一个非常重要的概念,它允许我们重复执行某些代码块。Scala作为一种现代化的编程语言,融合了函数式编程和面向对象编程的特点,提供了多种方式来实现循环。在本文中,我们将深入探讨Scala中的循环实现,包括基本的循环结构、使用集合与高阶函数、以及如何利用递归来实现循环。一、基础循环结构Scala提供了几种基础的循环结构,包括for循环、while循环和dowhi
- 【江西省乡镇界】面图层shp格式乡镇名称和编码wgs84无偏移arcgis数据内容测评
鸿业远图科技
arcgis
标题中的“江西省乡镇界面图层shp格式乡镇名称和编码wgs84无偏移arcgis数据”指的是一份地理信息系统(GIS)的数据集,主要用于描绘江西省内各个乡镇的边界信息。这份数据集采用的是Shapefile(shp)格式,这是一种广泛用于GIS领域的矢量数据格式,可以存储地理特征的几何、属性和标识信息。其中,“乡镇名称和编码”指的是每个乡镇的专属标识,通常包括乡镇的名字和一个唯一编码,方便数据管理和
- 想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
- INTJ 型人格详细解读职业发展、情感沟通和心理健康
Luntu
www.zxgj.cn求职招聘职场和发展程序人生
INTJ型人格,也被称之为建筑师型人格,在MBTI16种人格类型里,那可是相当独特又少见的一类。这类人思维深邃得很,脑袋里全是创造力,看世界的角度独特得很。INTJ擅长逻辑分析,瞅一眼就能抓住事物的本质,靠着超强的内在逻辑,搭建起属于自己对世界的认知体系。本文主要是分析intj型人格的特征(包括优势和不足),并将这些特征和职业发展,人际关系,心理健康等方面相结合,探索intj型人格的各方面,为谋划
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多