Flink+Hudi 构架湖仓一体化解决方案

本文转载自公众号【麒思妙想】,详细介绍了 Flink + Hudi 湖仓一体化方案的原型构建。主要内容为:

  1. Hudi
  2. 新架构与湖仓一体
  3. 最佳实践
  4. Flink on Hudi
  5. Flink CDC 2.0 on Hudi

Flink+Hudi 构架湖仓一体化解决方案_第1张图片

一、Hudi

1. 简介

Apache Hudi (发音为 “Hoodie”)在 DFS 的数据集上提供以下流原语

  • 插入更新 (如何改变数据集?)
  • 增量拉取 (如何获取变更的数据?)

Hudi 维护在数据集上执行的所有操作的时间轴 (timeline),以提供数据集的即时视图。Hudi 将数据集组织到与 Hive 表非常相似的基本路径下的目录结构中。数据集分为多个分区,文件夹包含该分区的文件。每个分区均由相对于基本路径的分区路径唯一标识。

分区记录会被分配到多个文件。每个文件都有一个唯一的文件 ID 和生成该文件的提交 (commit)。如果有更新,则多个文件共享相同的文件 ID,但写入时的提交 (commit) 不同。

存储类型 – 处理数据的存储方式

  • 写时复制
  • 纯列式
  • 创建新版本的文件
  • 读时合并
  • 近实时

视图 – 处理数据的读取方式

读取优化视图 - 输入格式仅选择压缩的列式文件

  • parquet 文件查询性能
  • 500GB 的延迟时间约为 30 分钟
  • 导入现有的 Hive 表

近实时视图

  • 混合、格式化数据
  • 约 1-5 分钟的延迟
  • 提供近实时表

增量视图

  • 数据集的变更
  • 启用增量拉取

Hudi 存储层由三个不同的部分组成

元数据 – 它以时间轴的形式维护了在数据集上执行的所有操作的元数据,该时间轴允许将数据集的即时视图存储在基本路径的元数据目录下。时间轴上的操作类型包括

  • 提交 (commit),一次提交表示将一批记录原子写入数据集中的过程。单调递增的时间戳,提交表示写操作的开始。
  • 清理 (clean),清理数据集中不再被查询中使用的文件的较旧版本。
  • 压缩 (compaction),将行式文件转化为列式文件的动作。
  • 索引,将传入的记录键快速映射到文件 (如果已存在记录键)。索引实现是可插拔的,Bloom 过滤器 - 由于不依赖任何外部系统,因此它是默认配置,索引和数据始终保持一致。Apache HBase - 对少量 key 更高效。在索引标记过程中可能会节省几秒钟。
  • 数据,Hudi 以两种不同的存储格式存储数据。实际使用的格式是可插入的,但要求具有以下特征 – 读优化的列存储格式 (ROFormat),默认值为 Apache Parquet;写优化的基于行的存储格式 (WOFormat),默认值为 Apache Avro。

Flink+Hudi 构架湖仓一体化解决方案_第2张图片

2. 为什么 Hudi 对于大规模和近实时应用很重要?

Hudi 解决了以下限制:

  • HDFS 的可伸缩性限制;
  • 需要在 Hadoop 中更快地呈现数据;
  • 没有直接支持对现有数据的更新和删除;
  • 快速的 ETL 和建模;
  • 要检索所有更新的记录,无论这些更新是添加到最近日期分区的新记录还是对旧数据的更新,Hudi 都允许用户使用最后一个检查点时间戳。此过程不用执行扫描整个源表的查询。

3. Hudi的优势

  • HDFS 中的可伸缩性限制;
  • Hadoop 中数据的快速呈现;
  • 支持对于现有数据的更新和删除;
  • 快速的 ETL 和建模。

(以上内容主要引用于:《Apache Hudi 详解》)

二、新架构与湖仓一体

通过湖仓一体、流批一体,准实时场景下做到了:数据同源、同计算引擎、同存储、同计算口径。数据的时效性可以到分钟级,能很好的满足业务准实时数仓的需求。下面是架构图:

Flink+Hudi 构架湖仓一体化解决方案_第3张图片

MySQL 数据通过 Flink CDC 进入到 Kafka。之所以数据先入 Kafka 而不是直接入 Hudi,是为了实现多个实时任务复用 MySQL 过来的数据,避免多个任务通过 Flink CDC 接 MySQL 表以及 Binlog,对 MySQL 库的性能造成影响。

通过 CDC 进入到 Kafka 的数据除了落一份到离线数据仓库的 ODS 层之外,会同时按照实时数据仓库的链路,从 ODS->DWD->DWS->OLAP 数据库,最后供报表等数据服务使用。实时数仓的每一层结果数据会准实时的落一份到离线数仓,通过这种方式做到程序一次开发、指标口径统一,数据统一。

从架构图上,可以看到有一步数据修正 (重跑历史数据) 的动作,之所以有这一步是考虑到:有可能存在由于口径调整或者前一天的实时任务计算结果错误,导致重跑历史数据的情况。

而存储在 Kafka 的数据有失效时间,不会存太久的历史数据,重跑很久的历史数据无法从 Kafka 中获取历史源数据。再者,如果把大量的历史数据再一次推到 Kafka,走实时计算的链路来修正历史数据,可能会影响当天的实时作业。所以针对重跑历史数据,会通过数据修正这一步来处理。

总体上说,这个架构属于 Lambda 和 Kappa 混搭的架构。流批一体数据仓库的各个数据链路有数据质量校验的流程。第二天对前一天的数据进行对账,如果前一天实时计算的数据无异常,则不需要修正数据,Kappa 架构已经足够。

(本节内容,引用自:《37 手游基于 Flink CDC + Hudi 湖仓一体方案实践》)

三、最佳实践

1. 版本搭配

版本选择,这个问题可能会成为困扰大家的第一个绊脚石,下面是 Hudi 中文社区推荐的版本适配:

Flink Hudi
1.12.2 0.9.0
1.13.1 0.10.0

建议用 Hudi master +Flink 1.13 这样可以和 CDC connector 更好地适配。

2. 下载Hudi

https://mvnrepository.com/art...

目前 maven 中央仓库,最新版本是 0.9.0 ,如果需要下载 0.10.0 版本 , 可以加入社区群,在共享文件中下载,也可以下载源码自行编译。

3. 执行

如果将 Hudi-Flink-bundle_2.11-0.10.0.jar 放到了 Flink/lib 下,则只需要如下执行即可,否则会出现各种找不到类的异常

bin/SQL-client.sh embedded

四、Flink on Hudi

新建 maven 工程,修改 pom 如下:



    4.0.0

    org.example
    Flink_Hudi_test
    1.0-SNAPSHOT

    
        8
        8
        1.13.1
        0.10.0
        2.10.1
    

    


        
            org.apache.hadoop
            hadoop-client
            ${hadoop.version}
        
        
            org.apache.hadoop
            hadoop-hdfs
            ${hadoop.version}
        
        
            org.apache.hadoop
            hadoop-common
            ${hadoop.version}
        


        
            org.apache.Flink
            Flink-core
            ${Flink.version}
        
        
            org.apache.Flink
            Flink-streaming-java_2.11
            ${Flink.version}
        

        
            org.apache.Flink
            Flink-connector-jdbc_2.11
            ${Flink.version}
        

        
            org.apache.Flink
            Flink-java
            ${Flink.version}
        
        
            org.apache.Flink
            Flink-clients_2.11
            ${Flink.version}
        
        
            org.apache.Flink
            Flink-table-api-java-bridge_2.11
            ${Flink.version}
        
        
            org.apache.Flink
            Flink-table-common
            ${Flink.version}
        

        
            org.apache.Flink
            Flink-table-planner_2.11
            ${Flink.version}
        

        
            org.apache.Flink
            Flink-table-planner-blink_2.11
            ${Flink.version}
        
        
            org.apache.Flink
            Flink-table-planner-blink_2.11
            ${Flink.version}
            test-jar
        

        
            com.ververica
            Flink-connector-mySQL-CDC
            2.0.0
        

        
            org.apache.Hudi
            Hudi-Flink-bundle_2.11
            ${Hudi.version}
            system
            ${project.basedir}/libs/Hudi-Flink-bundle_2.11-0.10.0-SNAPSHOT.jar
        

        
            mySQL
            mySQL-connector-java
            5.1.49
        


    

我们通过构建查询insert into t2 select replace(uuid(),'-',''),id,name,description,now() from mySQL_binlog 将创建的 MySQL 表,插入到 Hudi 里。

package name.lijiaqi;

import org.apache.Flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.Flink.table.api.EnvironmentSettings;
import org.apache.Flink.table.api.SQLDialect;
import org.apache.Flink.table.api.TableResult;
import org.apache.Flink.table.api.bridge.java.StreamTableEnvironment;

public class MySQLToHudiExample {
    public static void main(String[] args) throws Exception {
        EnvironmentSettings fsSettings = EnvironmentSettings.newInstance()
                .useBlinkPlanner()
                .inStreamingMode()
                .build();
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, fsSettings);

        tableEnv.getConfig().setSQLDialect(SQLDialect.DEFAULT);

        // 数据源表
        String sourceDDL =
                "CREATE TABLE mySQL_binlog (\n" +
                        " id INT NOT NULL,\n" +
                        " name STRING,\n" +
                        " description STRING\n" +
                        ") WITH (\n" +
                        " 'connector' = 'jdbc',\n" +
                        " 'url' = 'jdbc:mySQL://127.0.0.1:3306/test', \n"+
                        " 'driver' = 'com.mySQL.jdbc.Driver', \n"+
                        " 'username' = 'root',\n" +
                        " 'password' = 'dafei1288', \n" +
                        " 'table-name' = 'test_CDC'\n" +
                        ")";

        // 输出目标表
        String sinkDDL =
                "CREATE TABLE t2(\n" +
                        "\tuuid VARCHAR(20),\n"+
                        "\tid INT NOT NULL,\n" +
                        "\tname VARCHAR(40),\n" +
                        "\tdescription VARCHAR(40),\n" +
                        "\tts TIMESTAMP(3)\n"+
//                        "\t`partition` VARCHAR(20)\n" +
                        ")\n" +
//                        "PARTITIONED BY (`partition`)\n" +
                        "WITH (\n" +
                        "\t'connector' = 'Hudi',\n" +
                        "\t'path' = 'hdfs://172.19.28.4:9000/Hudi_t4/',\n" +
                        "\t'table.type' = 'MERGE_ON_READ'\n" +
                        ")" ;
        // 简单的聚合处理
        String transformSQL =
                "insert into t2 select replace(uuid(),'-',''),id,name,description,now()  from mySQL_binlog";

        tableEnv.executeSQL(sourceDDL);
        tableEnv.executeSQL(sinkDDL);
        TableResult result = tableEnv.executeSQL(transformSQL);
        result.print();

        env.execute("mySQL-to-Hudi");
    }
}

查询 Hudi

package name.lijiaqi;

import org.apache.Flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.Flink.table.api.EnvironmentSettings;
import org.apache.Flink.table.api.SQLDialect;
import org.apache.Flink.table.api.TableResult;
import org.apache.Flink.table.api.bridge.java.StreamTableEnvironment;

public class ReadHudi {
    public static void main(String[] args) throws Exception {
        EnvironmentSettings fsSettings = EnvironmentSettings.newInstance()
                .useBlinkPlanner()
                .inStreamingMode()
                .build();
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, fsSettings);

        tableEnv.getConfig().setSQLDialect(SQLDialect.DEFAULT);

        String sourceDDL =
                "CREATE TABLE t2(\n" +
                        "\tuuid VARCHAR(20),\n"+
                        "\tid INT NOT NULL,\n" +
                        "\tname VARCHAR(40),\n" +
                        "\tdescription VARCHAR(40),\n" +
                        "\tts TIMESTAMP(3)\n"+
//                        "\t`partition` VARCHAR(20)\n" +
                        ")\n" +
//                        "PARTITIONED BY (`partition`)\n" +
                        "WITH (\n" +
                        "\t'connector' = 'Hudi',\n" +
                        "\t'path' = 'hdfs://172.19.28.4:9000/Hudi_t4/',\n" +
                        "\t'table.type' = 'MERGE_ON_READ'\n" +
                        ")" ;
        tableEnv.executeSQL(sourceDDL);
        TableResult result2 = tableEnv.executeSQL("select * from t2");
        result2.print();

        env.execute("read_Hudi");
    }
}

展示结果

Flink+Hudi 构架湖仓一体化解决方案_第4张图片

五、Flink CDC 2.0 on Hudi

上一章节,我们使用代码形式构建实验,在本章节里,我们直接使用官网下载的 Flink 包来构建实验环境。

1. 添加依赖

添加如下依赖到 $Flink_HOME/lib 下:

  • Hudi-Flink-bundle_2.11-0.10.0-SNAPSHOT.jar (修改 Master 分支的 Hudi Flink 版本为 1.13.2 然后构建)
  • hadoop-mapreduce-client-core-2.7.3.jar (解决 Hudi ClassNotFoundException)
  • Flink-SQL-connector-mySQL-CDC-2.0.0.jar
  • Flink-format-changelog-json-2.0.0.jar
  • Flink-SQL-connector-Kafka_2.11-1.13.2.jar

注意,在寻找 jar 的时候,CDC 2.0 更新过group id ,不再试 com.alibaba.ververica 而是改成了 com.ververica

Flink+Hudi 构架湖仓一体化解决方案_第5张图片

2. Flink SQL CDC on Hudi

创建 MySQL CDC 表

CREATE  TABLE mySQL_users (
 id BIGINT PRIMARY KEY NOT ENFORCED ,
 name STRING,
 birthday TIMESTAMP(3),
 ts TIMESTAMP(3)
) WITH (
 'connector' = 'mySQL-CDC',
 'hostname' = 'localhost',
 'port' = '3306',
 'username' = 'root',
 'password' = 'dafei1288',
 'server-time-zone' = 'Asia/Shanghai',
 'database-name' = 'test',
 'table-name' = 'users'   
);

创建 Hudi 表

CREATE TABLE Hudi_users5(
 id BIGINT PRIMARY KEY NOT ENFORCED,
    name STRING,
    birthday TIMESTAMP(3),
    ts TIMESTAMP(3),
    `partition` VARCHAR(20)
) PARTITIONED BY (`partition`) WITH (
    'connector' = 'Hudi',
    'table.type' = 'MERGE_ON_READ',
    'path' = 'hdfs://localhost:9009/Hudi/Hudi_users5'
);

修改配置,让查询模式输出为表,设置 checkpoint

set execution.result-mode=tableau;

set execution.checkpointing.interval=10sec;

进行输入导入

INSERT INTO Hudi_users5(id,name,birthday,ts, partition) SELECT id,name,birthday,ts,DATE_FORMAT(birthday, 'yyyyMMdd') FROM mySQL_users;

查询数据

select * from Hudi_users5;

执行结果

Flink+Hudi 构架湖仓一体化解决方案_第6张图片

3. 卡执行计划

Flink+Hudi 构架湖仓一体化解决方案_第7张图片

这个问题研究了很久,表面上很正常,日志也没有任何报错,也可以看出来 CDC 起作用了,有数据写入,但是就是卡在 hoodie_stream_write 上一动不动,没有数据下发。感谢社区大佬 Danny Chan 的提点,可能是 checkpoint的问题,于是做了设置

set execution.checkpointing.interval=10sec;

于是终于正常:

Flink+Hudi 构架湖仓一体化解决方案_第8张图片

至此,Flink + Hudi 湖仓一体化方案的原型构建完成。

参考链接

https://blog.csdn.net/weixin_...

https://blog.csdn.net/qq_3709...

https://mp.weixin.qq.com/s/xo...


更多 Flink 相关技术问题,可扫码加入社区钉钉交流群;

第一时间获取最新技术文章和社区动态,请关注公众号~

img

你可能感兴趣的:(Flink大数据实时计算)