Lenet5神经网络是 Yann LeCun 等人在1998年提出的,该神经网络充分考虑图像的相关性。虽然Lenet5神经网络虽然规模不大,但是“麻雀虽小五脏俱全”,该网络涵盖了卷积层、池化层、全连接层。这在当时,已经是一个很不错的网络架构。
建议在读这篇博文前,先了解一下卷积神经网络,因为我写博客没什么经验,做图也不擅长,所以先把主要的内容放上来了,希望大家不要介意。
1.输入为32*32*1的图片大小,输入的是灰度图(后续操作都采用的是非全零填充方式)。
2.对输入的图片进行卷积,卷积核大小为5*5*1,个数为6,步长为1。
3.对卷积后的结果进行池化操作,池化大小为2*2,池话步长为2。
4.对池化后的结果继续进行卷积操作,卷积核大小为5*5*6,个属为16,步长为1。
5.对卷积后的结果进行池化操作,池化大小为2*2,步长为2。
6.将池化后的结果拉直,使其成为[1,5*5*16]的一维向量形式,进入全连接层。
7.输出结果。
一些修改
一点说明:该博文的程序都是参考自中国大学MOOC上曹健老师的 “人工智能实践”课程代码,本人在上面进行了细微修改以及添加部分注释,方便读者阅读
程序模块介绍
程序:
#coding:utf-8
import tensorflow as tf
IMAGE_SIZE = 28 # 图片尺寸
NUM_CHANNELS = 1 # 信道数
CONV1_SIZE = 5 # 一个卷积核尺寸
CONV1_KERNEL_NUM = 32 # 第一个卷积核个数
CONV2_SIZE = 5 # 第二个卷积核尺寸
CONV2_KERNEL_NUM = 64 # 第二个卷积核个数
FC_SIZE = 512 # 全连接层尺寸
OUTPUT_NODE = 10 # 输出结点个数
# 用于获得权重矩阵,并定义了正则化选项
def get_weight(shape, regularizer):
w = tf.Variable(tf.truncated_normal(shape,stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
return w
# 用于获得偏差
def get_bias(shape):
b = tf.Variable(tf.zeros(shape))
return b
# 进行卷积操作
def conv2d(x,w):
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
# 进行2*2最大池化操作
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 前向传播
def forward(x, train, regularizer):
conv1_w = get_weight([CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_KERNEL_NUM], regularizer)
conv1_b = get_bias([CONV1_KERNEL_NUM])
conv1 = conv2d(x, conv1_w)
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_b)) # RELU激活函数
pool1 = max_pool_2x2(relu1)
conv2_w = get_weight([CONV2_SIZE, CONV2_SIZE, CONV1_KERNEL_NUM, CONV2_KERNEL_NUM],regularizer)
conv2_b = get_bias([CONV2_KERNEL_NUM])
conv2 = conv2d(pool1, conv2_w)
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_b))
pool2 = max_pool_2x2(relu2)
pool_shape = pool2.get_shape().as_list()
nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
reshaped = tf.reshape(pool2, [pool_shape[0], nodes])
fc1_w = get_weight([nodes, FC_SIZE], regularizer)
fc1_b = get_bias([FC_SIZE])
fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_w) + fc1_b)
if train: fc1 = tf.nn.dropout(fc1, 0.6) # 如果是训练阶段,加入dropout选项,减小模型的过拟合程度
fc2_w = get_weight([FC_SIZE, OUTPUT_NODE], regularizer)
fc2_b = get_bias([OUTPUT_NODE])
y = tf.matmul(fc1, fc2_w) + fc2_b
return y
#coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_lenet5_forward
import os
import numpy as np
BATCH_SIZE = 100 # 每一轮迭代的个数
LEARNING_RATE_BASE = 0.005 # 基础学习率
LEARNING_RATE_DECAY = 0.99 # 学习衰减率
REGULARIZER = 0.0001 # 正则化洗漱
STEPS = 50000 # 训练步数
MOVING_AVERAGE_DECAY = 0.99 # 滑动平均衰减率
MODEL_SAVE_PATH="./model/"
MODEL_NAME="mnist_model"
def backward(mnist):
x = tf.placeholder(tf.float32,[
BATCH_SIZE,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.NUM_CHANNELS]) # 定义占位符
y_ = tf.placeholder(tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE])
y = mnist_lenet5_forward.forward(x,True, REGULARIZER) # 带正则化的前项传播结果
global_step = tf.Variable(0, trainable=False)
# 定义总的损失函数
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cem = tf.reduce_mean(ce)
loss = cem + tf.add_n(tf.get_collection('losses'))
# 带指数衰减的学习率,可以较快地收敛
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True)
# 使用梯度下降法搜索最佳参数
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
# 实现滑动平均
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
ema_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([train_step, ema_op]): # 将train_step和ema_op两个操作绑定到train_op上
train_op = tf.no_op(name='train')
# 实例化一个保存和恢复变量的saver,并创建一个会话
saver = tf.train.Saver()
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
# 通过checkpoint文件定位到最新保存的模型,若文件存在,则加载最新的模型
ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
for i in range(STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
reshaped_xs = np.reshape(xs,(
BATCH_SIZE,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.NUM_CHANNELS)) # 进行resize操作,使得满足输入要求
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})
if i % 100 == 0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
def main():
mnist = input_data.read_data_sets("./data/", one_hot=True)
print(mnist)
backward(mnist)
if __name__ == '__main__':
main()
#coding:utf-8
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_lenet5_forward
import mnist_lenet5_backward
import numpy as np
TEST_INTERVAL_SECS = 5
def test(mnist):
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32,[
mnist.test.num_examples,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.NUM_CHANNELS])
y_ = tf.placeholder(tf.float32, [None, mnist_lenet5_forward.OUTPUT_NODE])
y = mnist_lenet5_forward.forward(x,False,None)
ema = tf.train.ExponentialMovingAverage(mnist_lenet5_backward.MOVING_AVERAGE_DECAY)
ema_restore = ema.variables_to_restore()
saver = tf.train.Saver(ema_restore)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 计算准确率
while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(mnist_lenet5_backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
reshaped_x = np.reshape(mnist.test.images,(
mnist.test.num_examples,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.IMAGE_SIZE,
mnist_lenet5_forward.NUM_CHANNELS))
accuracy_score = sess.run(accuracy, feed_dict={x:reshaped_x,y_:mnist.test.labels})
print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score))
else:
print('No checkpoint file found')
return
time.sleep(TEST_INTERVAL_SECS)
def main():
mnist = input_data.read_data_sets("./data/", one_hot=True)
test(mnist)
if __name__ == '__main__':
main()