- GENERALIST REWARD MODELS: FOUND INSIDE LARGELANGUAGE MODELS
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习语言模型人工智能自然语言处理深度学习机器学习计算机视觉
GeneralistRewardModels:FoundInsideLargeLanguageModelshttps://arxiv.org/pdf/2506.232351.概述将大型语言模型(LLMs)与复杂的人类价值观(如乐于助人和诚实)对齐,仍然是人工智能发展中的一个核心挑战。这项任务的主要范式是来自人类反馈的强化学习(RLHF)[Christianoetal.,2017;Baietal.,
- Python深度学习实践:LSTM与GRU在序列数据预测中的应用
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:LSTM与GRU在序列数据预测中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来序列数据预测是机器学习领域的一个重要研究方向,涉及时间序列分析、自然语言处理、语音识别等多个领域。序列数据具有时间依赖性,即序列中每个元素都受到前面元素的影响。传统的机器学习算法难以捕捉这种时间依赖性,而深度学习
- AI 大模型重塑软件开发流程
万花丛中一抹绿
人工智能
一、AI大模型的定义与发展历史AI大模型是基于海量数据训练的深度学习模型,具备强大的自然语言理解、逻辑推理和知识生成能力。在软件开发领域,以GPT-4、CodeLlama、GitHubCopilotX为代表的大模型,能理解代码语法、语义及业务逻辑,实现代码生成、漏洞检测等复杂任务。其发展可追溯至2017年,谷歌提出Transformer架构,为大模型奠定了核心基础。2018年,GPT-1问世,参数
- Transformers基础组件—Datasets
小蒋的学习笔记
python人工智能机器学习
目录datasets基本使用加载在线数据集加载数据集合集中的某一项任务按照数据集划分进行加载查看数据集数据集划分数据选取与过滤数据映射保存与加载加载本地数据集直接加载文件作为数据集加载文件夹内全部文件作为数据集通过预先加载的其他格式转换加载数据集通过自定义加载脚本加载数据集DatasetwithDataCollatordatasets基本使用fromdatasetsimport*加载在线数据集da
- 进阶向:基于Python的智能客服系统设计与实现
智能客服系统开发指南系统概述智能客服系统是人工智能领域的重要应用,它通过自然语言处理(NLP)和机器学习技术自动化处理用户查询,显著提升客户服务效率和响应速度。基于Python的实现方案因其丰富的生态系统(如NLTK、spaCy、Transformers等库)、跨平台兼容性以及易于集成的特点,成为开发智能客服系统的首选。系统架构系统核心包括两个主要功能模块:1.API集成模块负责连接各类外部服务,
- 计算机视觉产品推荐,个性化推荐:人工智能中的计算机视觉、NLP自然语言处理和个性化推荐系统哪个前景更好一些?...
这个问题直接回答的话可能还是有着很强的个人观点,所以不如先向你介绍一些这几个领域目前的研究现状和应用情况(不再具体介绍其中原理)你自己可以斟酌一下哪方面更适合自己个性化推荐。一.所谓计算机视觉,是指使用计算机及相关设备对生物视觉的一种模拟个性化推荐。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样[1]。现在人工智能的计算机视觉主要研究
- FunASR Paraformer-zh:高效中文端到端语音识别方案全解
项目简介FunASR是阿里巴巴达摩院开源的端到端语音识别工具箱,集成了多种语音识别、语音活动检测(VAD)、说话人识别等模块。其中paraformer-zh和paraformer-zh-streaming是针对中文语音识别任务优化的端到端模型,分别适用于离线和流式场景。Paraformer采用并行Transformer架构,兼具高精度和低延迟,广泛应用于智能客服、会议转写、语音助手等场景。主要特点
- 《从零构建大模型》系列(21):从头实现GPT模型——构建文本生成引擎
本文将带你从零构建类GPT模型:通过实现层归一化、前馈网络和Transformer块等核心组件,打造一个完整的文本生成模型架构,为后续训练奠定基础。目录一、GPT模型架构全景图1.1模型组件分解1.2GPT-2模型规格二、层归一化实现2.1为什么需要层归一化?2.2层归一化实现代码三、前馈神经网络实现3.1GPT中的前馈结构编辑3.2GELU激活函数3.3完整前馈网络实现四、Transformer
- 企业级AI搜索引擎从零到一开发实战:全链路技术解析与代码实现
简介从零开始构建一个企业级AI搜索引擎,是掌握现代搜索技术栈的重要实践。本文将深入剖析基于大语言模型、知识图谱和分布式架构的智能搜索引擎开发全流程,从数据抓取、索引构建到查询处理模块,提供完整的代码实现和架构设计。通过整合多平台数据并应用优化策略,构建一个具备高并发处理能力、精准语义理解及高效搜索排序的智能搜索引擎系统。一、架构设计:智能搜索引擎的核心组件智能搜索引擎架构由三个核心模块组成:数据抓
- 从功能到落地:AI Agent 平台选型的 6 大维度全解析
一、背景:AIAgent爆发式普及,企业如何科学选型?近两年,随着大语言模型(LLM)技术的快速迭代,“AIAgent”正在从实验室走向企业实际生产线。从内容生成、客户服务,到销售助手、流程调度,越来越多企业开始探索将Agent作为“智能化助手”纳入业务流程。然而市场上平台众多、能力差异巨大,企业常常面临如下难题:不知道该选国内还是国外平台?哪个平台支持私有化部署?是否能接入已有CRM/CDP系统
- 基于 Qwen-Agent 与 MCP 实现阿里云 ECS 实例查询(含完整代码与实操)
✅关键词:Qwen-Agent、MCP、阿里云、运维、LLM、FunctionCalling在现代云运维场景中,我们不仅希望大语言模型(LLM)能回答文本问题,更希望它能直接调用云端API、查询资源,实现「智能运维」。本文将分享如何基于Qwen-Agent和MCP,快速实现一个“云资源助手”,能帮你查询阿里云ECS实例信息。什么是MCP?MCP(Model-ComputingPlatform)是阿
- 实现大语言模型与应用的无缝对接
meslog
技术分享语言模型microsoft人工智能
在当今人工智能快速发展的时代,大语言模型(LLMs)已经成为众多应用的核心驱动力。然而,如何让这些强大的模型与各种数据源和工具进行有效集成,仍然是一个挑战。ModelContextProtocol(MCP)正是为解决这一问题而设计的开放协议,它标准化了应用程序如何向大语言模型提供上下文信息。本文将介绍MCP的基本概念,并通过C#SDK展示如何实现客户端和服务器端的交互。什么是MCP?ModelCo
- Spring AI + MCP Client 配置与使用详解
超级小忍
SpringAIspring人工智能java
前言随着大模型技术的快速发展,ModelCoordinationProtocol(MCP)逐渐成为连接本地系统和远程AI服务的重要桥梁。SpringAI是Spring官方推出的AI开发框架,支持多种语言模型接口,而MCPClient则是其集成远程推理能力的核心组件之一。本文将详细介绍如何在SpringBoot项目中配置和使用SpringAI的MCPClient,包括环境准备、依赖引入、配置方式、代
- 【大语言模型基础】GPT(Generative Pre-training )生成式无监督预训练模型原理
前言ELMo:将上下文当作特征,但是无监督的语料和我们真实的语料还是有区别的,不一定符合我们特定的任务,是一种双向的特征提取。OpenAIGPT:通过transformerdecoder学习出来一个语言模型,不是固定的,通过任务fine-tuning,用transfomer代替ELMo的LSTM。OpenAIGPT其实就是缺少了encoder的transformer:当然也没了encoder与de
- MATC:通过数学推理和图表还原增强视觉语言预训练
AI专题精讲
模型加速人工智能AI技术应用多模态视觉语言
温馨提示:本篇文章已同步至"AI专题精讲"MATC:通过数学推理和图表还原增强视觉语言预训练摘要视觉语言数据,如图表、图形和信息图,在人类世界中无处不在。然而,现有的最先进的视觉语言模型在这些数据上的表现并不理想。我们提出了MATCHA(数学推理与图表去渲染预训练),旨在增强视觉语言模型在联合建模图表/图形与语言数据方面的能力。具体而言,我们提出了几个预训练任务,涵盖了图形解构和数值推理,这些是视
- 现代人工智能综合分类:大模型时代的架构、模态与生态系统
司南锤
economics人工智能分类数据挖掘
目录引言:人工智能的第四次浪潮与新分类的必要性第一节:大型模型范式的基础支柱1.1规模化假说:算力、数据与算法的三位一体1.2“涌现能力”之谜:当“更多”变为“不同”1.3自监督学习(SSL)革命第二节:大型模型的技术分类学2.1Transformer:现代人工智能的架构基石2.2架构分化:一种功能性分类2.3提升效率与规模:专家混合模型(MoE)2.4超越Transformer:下一代架构的探索
- Sequential Thinking:AI深度思考的新范式及其与CoT、ReAct的对比分析
码字的字节
人工智能SequentialCoTReAct
引言:AI深度思考的演进与SequentialThinking的崛起在人工智能技术快速发展的今天,AI模型的思考能力正经历着从简单应答到深度推理的革命性转变。这一演进过程不仅反映了技术本身的进步,更体现了人类对机器智能认知边界的持续探索。早期的大语言模型虽然能够生成流畅的文本,但在处理复杂问题时往往表现出"浅思考"的局限性——答案可能看似合理,却缺乏严谨的推理过程和系统性考量。例如,2022年的一
- DETR革命:目标检测的Transformer时代
加油吧zkf
目标检测YOLOpython开发语言人工智能图像处理
《DETR从0到1:目标检测Transformer的崛起》为什么会有DETR?在深度学习目标检测发展史上,2014~2019年几乎被基于卷积神经网络(CNN)的检测器统治:两阶段:FasterR-CNN、MaskR-CNN单阶段:YOLO、SSD、RetinaNet这些检测器虽然效果强大,但背后依赖:✅Anchor(先验框)✅NMS(非极大值抑制)✅特征金字塔、手工设计问题:结构复杂、调参困难、不
- 035_ClaudeCode_MCP_介绍
义薄云天us
ClaudeCode菜鸟到高手专栏ClaudeCode机器学习深度学习mcp
035_ClaudeCode_MCP_介绍摘要ModelContextProtocol(MCP)是一个开放的标准化协议,专为大型语言模型提供上下文数据而设计。作为ClaudeCode生态系统的重要组成部分,MCP如同"AI应用程序的USB-C端口",提供了将AI模型连接到不同数据源和工具的标准化方式。本文全面介绍MCP的核心概念、架构设计和在ClaudeCode中的应用场景。目录什么是ModelC
- 深度学习模块实践手册(第十一期)
加油吧zkf
目标检测目标检测模块解析与实践深度学习人工智能计算机视觉目标检测python
46、缩放点积注意力模块论文《AttentionIsAllYouNeed》1、作用:缩放点积注意力(ScaledDot-ProductAttention)是Transformer模型的核心组件,旨在解决序列建模中长距离依赖关系捕捉的问题。传统的循环神经网络(RNN)在处理长序列时存在梯度消失或爆炸的问题,且并行性较差。该模块通过计算查询(Query)、键(Key)和值(Value)之间的相似度,实
- 大模型或多模态在能源系统优化调度中的应用
u013250861
LLM能源人工智能
1.大模型在电力调度中的应用GAIA-电力调度大语言模型项目描述:专为电力调度设计的大语言模型,能够处理运行调整、运行监控和黑启动等任务技术特点:基于LLaMA2微调,专门针对电力系统领域优化论文:“Alargelanguagemodelforadvancedpowerdispatch”(NatureScientificReports,2025)GitHub:暂未公开源代码,但论文中提到了完整的技
- 大模型格式
目录大模型格式:ollma可以加载ggufChatGPT说:什么是GGUF?大模型格式:Ollama模型格式只能运行已打包成.gguf格式的模型,或通过其Modelfile方式构建ModelScope模型格式大多使用HuggingFaceTransformers格式,如.bin、.safetensors,与Ollama不兼容模型加载方式不同Ollama自带封装推理引擎(ggml/llama.cpp
- 大模型算法工程师技术路线全解析:从基础到资深的能力跃迁
Mr.小海
大模型算法数据挖掘人工智能机器学习深度学习机器翻译web3
文章目录大模型算法工程师技术路线全解析:从基础到资深的能力跃迁一、基础阶段(0-2年经验):构建核心知识体系与工程入门数学与机器学习基础编程与深度学习框架NLP与Transformer入门二、进阶阶段(2-4年经验):深化模型技术与工程落地能力大模型预训练与微调技术预训练原理:数据与任务的协同设计微调工具:参数高效适配与工程优化对齐实践:价值观优化与实证效果分布式训练与框架工具并行策略:多维度协同
- Go-Redis × 向量检索实战用 HNSW 在 Redis 中索引与查询文本 Embedding(Hash & JSON 双版本)
Hello.Reader
数据库运维缓存技术golangredisembedding
1.场景与思路痛点:把“文本内容”转成向量后,如何在本地Redis里做近似向量搜索(KNN),而不依赖外部向量数据库?方案:利用HuggingFace模型sentence-transformers/all-MiniLM-L6-v2生成384维Float32向量;借助RediSearch的HNSW索引能力,在Hash或JSON文档里存储&查询向量;用go-redisv9的高阶API(FTCreate
- Spring AI高级RAG功能查询重写和查询翻译
非ban必选
deepseekspring人工智能java
1、创建查询重写转换器//创建查询重写转换器queryTransformer=RewriteQueryTransformer.builder().chatClientBuilder(openAiChatClient.mutate()).build();查询重写是RAG系统中的一个重要优化技术,它能够将用户的原始查询转换成更加结构化和明确的形式。这种转换可以提高检索的准确性,并帮助系统更好地理解用户
- Spring AI从入门到精通:构建智能Spring应用的全面指南
java干货仓库
Spring八股文汇总大模型spring人工智能java
随着人工智能技术的快速发展,将大语言模型(LLM)与企业应用集成已成为趋势。SpringAI作为Spring官方推出的AI集成框架,为开发者提供了便捷、标准化的方式来构建智能应用。本文将从基础概念到高级应用,全面介绍SpringAI的核心功能与实践技巧。一、SpringAI概述1.1什么是SpringAI?SpringAI是VMware于2023年推出的开源框架,旨在简化大语言模型(LLM)与Sp
- Rust+ChatBoxAI:实战
ChatboxAIChatboxAI是一款基于人工智能技术的智能助手工具,旨在通过自然语言交互帮助用户完成多种任务。以下是其核心功能与特点:功能概述多模型支持:可连接OpenAI、Claude、Gemini等主流大语言模型,用户能自由切换不同AI服务。本地运行:支持离线使用,数据隐私性较强,适合敏感信息处理场景。跨平台兼容:提供Windows、macOS和Linux客户端,同步支持移动端应用。核心
- 基于R、Python的Copula变量相关性分析及AI大语言模型应用
阁楼里的小花儿
R语言PythonCopula变量相关性分析AI大语言模型结构方程模型贝叶斯网络统计学
前言:在工程、水文和金融等各学科的研究中,总是会遇到很多变量,研究这些相互纠缠的变量间的相关关系是各学科的研究的重点。虽然皮尔逊相关、秩相关等相关系数提供了变量间相关关系的粗略结果,但这些系数都存在着无法克服的困难。例如,皮尔逊相关系数只能反映变量间的线性相关,而秩相关则更多的适用于等级变量。大多数情况下变量间的相关性非常复杂,而且随着变量取值的变化而变化,而这些相关系数都是全局性的,因此无法提供
- BEV+Transformer
Monkey PilotX
自动驾驶transformer深度学习人工智能
在自动驾驶系统中,BEV(Bird’sEyeView)+Transformer主要应用于感知与环境建图(Perception&SceneUnderstanding)环节,尤其是在多传感器融合、目标检测、语义分割、轨迹预测等任务中。在自动驾驶中的关键应用场景应用环节BEV+Transformer的作用感知(Perception)多摄像头图像融合成BEV视角,进行目标检测、语义分割预测(Predict
- 大型语言模型在自动化AI科学研究与论文撰写中的应用与展望
这是Jamon
AI4SR人工智能
1.引言:LLM驱动科学研究与论文撰写的范式转变大型语言模型(LLM)的快速发展正在科学发现领域引发一场深刻的范式转变。这些模型正从最初的任务特定自动化工具,逐步演变为能够自主执行复杂任务的智能代理,从根本上重新定义了研究过程以及人机协作的模式。LLM所展现出的新兴能力,例如高级规划、复杂推理和精确指令遵循,显著加速了科学发现的步伐。传统科学研究通常是一个由人类主导的、高度线性且劳动密集型的过程,
- 开发者关心的那些事
圣子足道
ios游戏编程apple支付
我要在app里添加IAP,必须要注册自己的产品标识符(product identifiers)。产品标识符是什么?
产品标识符(Product Identifiers)是一串字符串,它用来识别你在应用内贩卖的每件商品。App Store用产品标识符来检索产品信息,标识符只能包含大小写字母(A-Z)、数字(0-9)、下划线(-)、以及圆点(.)。你可以任意排列这些元素,但我们建议你创建标识符时使用
- 负载均衡器技术Nginx和F5的优缺点对比
bijian1013
nginxF5
对于数据流量过大的网络中,往往单一设备无法承担,需要多台设备进行数据分流,而负载均衡器就是用来将数据分流到多台设备的一个转发器。
目前有许多不同的负载均衡技术用以满足不同的应用需求,如软/硬件负载均衡、本地/全局负载均衡、更高
- LeetCode[Math] - #9 Palindrome Number
Cwind
javaAlgorithm题解LeetCodeMath
原题链接:#9 Palindrome Number
要求:
判断一个整数是否是回文数,不要使用额外的存储空间
难度:简单
分析:
题目限制不允许使用额外的存储空间应指不允许使用O(n)的内存空间,O(1)的内存用于存储中间结果是可以接受的。于是考虑将该整型数反转,然后与原数字进行比较。
注:没有看到有关负数是否可以是回文数的明确结论,例如
- 画图板的基本实现
15700786134
画图板
要实现画图板的基本功能,除了在qq登陆界面中用到的组件和方法外,还需要添加鼠标监听器,和接口实现。
首先,需要显示一个JFrame界面:
public class DrameFrame extends JFrame { //显示
- linux的ps命令
被触发
linux
Linux中的ps命令是Process Status的缩写。ps命令用来列出系统中当前运行的那些进程。ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信息,就可以使用top命令。
要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,而 ps 命令就是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行
- Android 音乐播放器 下一曲 连续跳几首歌
肆无忌惮_
android
最近在写安卓音乐播放器的时候遇到个问题。在MediaPlayer播放结束时会回调
player.setOnCompletionListener(new OnCompletionListener() {
@Override
public void onCompletion(MediaPlayer mp) {
mp.reset();
Log.i("H
- java导出txt文件的例子
知了ing
javaservlet
代码很简单就一个servlet,如下:
package com.eastcom.servlet;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.net.URLEncoder;
import java.sql.Connection;
import java.sql.Resu
- Scala stack试玩, 提高第三方依赖下载速度
矮蛋蛋
scalasbt
原文地址:
http://segmentfault.com/a/1190000002894524
sbt下载速度实在是惨不忍睹, 需要做些配置优化
下载typesafe离线包, 保存为ivy本地库
wget http://downloads.typesafe.com/typesafe-activator/1.3.4/typesafe-activator-1.3.4.zip
解压r
- phantomjs安装(linux,附带环境变量设置) ,以及casperjs安装。
alleni123
linuxspider
1. 首先从官网
http://phantomjs.org/下载phantomjs压缩包,解压缩到/root/phantomjs文件夹。
2. 安装依赖
sudo yum install fontconfig freetype libfreetype.so.6 libfontconfig.so.1 libstdc++.so.6
3. 配置环境变量
vi /etc/profil
- JAVA IO FileInputStream和FileOutputStream,字节流的打包输出
百合不是茶
java核心思想JAVA IO操作字节流
在程序设计语言中,数据的保存是基本,如果某程序语言不能保存数据那么该语言是不可能存在的,JAVA是当今最流行的面向对象设计语言之一,在保存数据中也有自己独特的一面,字节流和字符流
1,字节流是由字节构成的,字符流是由字符构成的 字节流和字符流都是继承的InputStream和OutPutStream ,java中两种最基本的就是字节流和字符流
类 FileInputStream
- Spring基础实例(依赖注入和控制反转)
bijian1013
spring
前提条件:在http://www.springsource.org/download网站上下载Spring框架,并将spring.jar、log4j-1.2.15.jar、commons-logging.jar加载至工程1.武器接口
package com.bijian.spring.base3;
public interface Weapon {
void kil
- HR看重的十大技能
bijian1013
提升能力HR成长
一个人掌握何种技能取决于他的兴趣、能力和聪明程度,也取决于他所能支配的资源以及制定的事业目标,拥有过硬技能的人有更多的工作机会。但是,由于经济发展前景不确定,掌握对你的事业有所帮助的技能显得尤为重要。以下是最受雇主欢迎的十种技能。 一、解决问题的能力 每天,我们都要在生活和工作中解决一些综合性的问题。那些能够发现问题、解决问题并迅速作出有效决
- 【Thrift一】Thrift编译安装
bit1129
thrift
什么是Thrift
The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently and s
- 【Avro三】Hadoop MapReduce读写Avro文件
bit1129
mapreduce
Avro是Doug Cutting(此人绝对是神一般的存在)牵头开发的。 开发之初就是围绕着完善Hadoop生态系统的数据处理而开展的(使用Avro作为Hadoop MapReduce需要处理数据序列化和反序列化的场景),因此Hadoop MapReduce集成Avro也就是自然而然的事情。
这个例子是一个简单的Hadoop MapReduce读取Avro格式的源文件进行计数统计,然后将计算结果
- nginx定制500,502,503,504页面
ronin47
nginx 错误显示
server {
listen 80;
error_page 500/500.html;
error_page 502/502.html;
error_page 503/503.html;
error_page 504/504.html;
location /test {return502;}}
配置很简单,和配
- java-1.二叉查找树转为双向链表
bylijinnan
二叉查找树
import java.util.ArrayList;
import java.util.List;
public class BSTreeToLinkedList {
/*
把二元查找树转变成排序的双向链表
题目:
输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。
要求不能创建任何新的结点,只调整指针的指向。
10
/ \
6 14
/ \
- Netty源码学习-HTTP-tunnel
bylijinnan
javanetty
Netty关于HTTP tunnel的说明:
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/socket/http/package-summary.html#package_description
这个说明有点太简略了
一个完整的例子在这里:
https://github.com/bylijinnan
- JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
coder_xpf
jqueryjsonmapval()
JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
数据库查询出来的map有一个字段为空
通过System.out.println()输出 JSONUtil.serialize(map): {"one":"1","two":"nul
- Hibernate缓存总结
cuishikuan
开源sshjavawebhibernate缓存三大框架
一、为什么要用Hibernate缓存?
Hibernate是一个持久层框架,经常访问物理数据库。
为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能。
缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在特定的时刻或事件会同步缓存和物理数据源的数据。
二、Hibernate缓存原理是怎样的?
Hibernate缓存包括两大类:Hib
- CentOs6
dalan_123
centos
首先su - 切换到root下面1、首先要先安装GCC GCC-C++ Openssl等以来模块:yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-devel2、再安装ncurses模块yum -y install ncurses-develyum install ncurses-devel3、下载Erang
- 10款用 jquery 实现滚动条至页面底端自动加载数据效果
dcj3sjt126com
JavaScript
无限滚动自动翻页可以说是web2.0时代的一项堪称伟大的技术,它让我们在浏览页面的时候只需要把滚动条拉到网页底部就能自动显示下一页的结果,改变了一直以来只能通过点击下一页来翻页这种常规做法。
无限滚动自动翻页技术的鼻祖是微博的先驱:推特(twitter),后来必应图片搜索、谷歌图片搜索、google reader、箱包批发网等纷纷抄袭了这一项技术,于是靠滚动浏览器滚动条
- ImageButton去边框&Button或者ImageButton的背景透明
dcj3sjt126com
imagebutton
在ImageButton中载入图片后,很多人会觉得有图片周围的白边会影响到美观,其实解决这个问题有两种方法
一种方法是将ImageButton的背景改为所需要的图片。如:android:background="@drawable/XXX"
第二种方法就是将ImageButton背景改为透明,这个方法更常用
在XML里;
<ImageBut
- JSP之c:foreach
eksliang
jspforearch
原文出自:http://www.cnblogs.com/draem0507/archive/2012/09/24/2699745.html
<c:forEach>标签用于通用数据循环,它有以下属性 属 性 描 述 是否必须 缺省值 items 进行循环的项目 否 无 begin 开始条件 否 0 end 结束条件 否 集合中的最后一个项目 step 步长 否 1
- Android实现主动连接蓝牙耳机
gqdy365
android
在Android程序中可以实现自动扫描蓝牙、配对蓝牙、建立数据通道。蓝牙分不同类型,这篇文字只讨论如何与蓝牙耳机连接。
大致可以分三步:
一、扫描蓝牙设备:
1、注册并监听广播:
BluetoothAdapter.ACTION_DISCOVERY_STARTED
BluetoothDevice.ACTION_FOUND
BluetoothAdapter.ACTION_DIS
- android学习轨迹之四:org.json.JSONException: No value for
hyz301
json
org.json.JSONException: No value for items
在JSON解析中会遇到一种错误,很常见的错误
06-21 12:19:08.714 2098-2127/com.jikexueyuan.secret I/System.out﹕ Result:{"status":1,"page":1,&
- 干货分享:从零开始学编程 系列汇总
justjavac
编程
程序员总爱重新发明轮子,于是做了要给轮子汇总。
从零开始写个编译器吧系列 (知乎专栏)
从零开始写一个简单的操作系统 (伯乐在线)
从零开始写JavaScript框架 (图灵社区)
从零开始写jQuery框架 (蓝色理想 )
从零开始nodejs系列文章 (粉丝日志)
从零开始编写网络游戏 
- jquery-autocomplete 使用手册
macroli
jqueryAjax脚本
jquery-autocomplete学习
一、用前必备
官方网站:http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
当前版本:1.1
需要JQuery版本:1.2.6
二、使用
<script src="./jquery-1.3.2.js" type="text/ja
- PLSQL-Developer或者Navicat等工具连接远程oracle数据库的详细配置以及数据库编码的修改
超声波
oracleplsql
在服务器上将Oracle安装好之后接下来要做的就是通过本地机器来远程连接服务器端的oracle数据库,常用的客户端连接工具就是PLSQL-Developer或者Navicat这些工具了。刚开始也是各种报错,什么TNS:no listener;TNS:lost connection;TNS:target hosts...花了一天的时间终于让PLSQL-Developer和Navicat等这些客户
- 数据仓库数据模型之:极限存储--历史拉链表
superlxw1234
极限存储数据仓库数据模型拉链历史表
在数据仓库的数据模型设计过程中,经常会遇到这样的需求:
1. 数据量比较大; 2. 表中的部分字段会被update,如用户的地址,产品的描述信息,订单的状态等等; 3. 需要查看某一个时间点或者时间段的历史快照信息,比如,查看某一个订单在历史某一个时间点的状态, 比如,查看某一个用户在过去某一段时间内,更新过几次等等; 4. 变化的比例和频率不是很大,比如,总共有10
- 10点睛Spring MVC4.1-全局异常处理
wiselyman
spring mvc
10.1 全局异常处理
使用@ControllerAdvice注解来实现全局异常处理;
使用@ControllerAdvice的属性缩小处理范围
10.2 演示
演示控制器
package com.wisely.web;
import org.springframework.stereotype.Controller;
import org.spring