- DeepSeek在智慧物流管控中的全场景落地方案
猴的哥儿
笔记大数据交通物流python数据仓库微服务
一、智慧物流核心痛点与DeepSeek解决方案矩阵物流环节行业痛点DeepSeek技术方案价值增益仓储管理库存预测误差率>30%多模态时空预测模型库存周转率↑40%运输调度车辆空驶率35%强化学习动态调度引擎运输成本↓25%路径规划突发路况响应延迟>30分钟实时路况语义理解+自适应规划准时交付率↑18%异常检测50%异常依赖人工发现多传感器融合的异常模式识别异常发现时效↑6倍客户服务50%咨询需人
- 自动化立体仓库设计步骤:7步
King's King
自动化运维
导语大家好,我是社长,老K。专注分享智能制造和智能仓储物流等内容。完整版文件和更多学习资料,请球友到知识星球【智能仓储物流技术研习社】自行下载这份文件是关于自动化立体仓库设计步骤的详细指南,其核心内容包括以下几个阶段:资料收集与研究:明确用户目标,收集包括工艺过程、物流要求、物料规格、现场条件、系统功能要求等原始资料。确定主要形式和参数:基于收集的资料,计算设计所需的关键参数,如库区出入库总量、货
- 人工智能技术篇*卷(三)
code_stream
#人工智能人工智能
接下来,我们在神经网络方面继续展开神经网络多层感知机(MLP)解决问题:多层感知机是一种基本的前馈神经网络,可用于解决分类和回归问题。它通过多个神经元层的非线性变换,能够学习复杂的非线性关系,对数据进行分类或预测连续值。例如,在手写数字识别中,它可以从数字图像的像素数据中学习到特征模式,从而判断该数字是0-9中的哪一个;在房价预测中,根据房屋的面积、房间数量等特征预测房价。案例:以手写数字识别为例
- Oracle SQL*Loader 与 SQLULDR2 学习指南
瑞琪姐
oraclesql数据库
1.SQL*Loader(sqlldr)1.1概述作用:Oracle官方工具,用于将外部数据文件(如CSV、文本文件)高效加载到数据库表中。特点:支持多种数据格式(定长、变长、CSV)。支持直接路径加载(DirectPathLoad),绕过SQL引擎,提升性能。提供错误记录和丢弃无效数据的功能。1.2核心组件控制文件(ControlFile):定义数据加载规则,包括数据文件路径、目标表、字段映射等
- 神经网络模型压缩&实例教程—非结构化剪枝
程序先锋
《python深度学习》笔记神经网络剪枝深度学习
目录1.导包&定义一个简单的网络2.获取网络需要剪枝的模块3.模块剪枝(核心)3.1随机剪枝weight3.2L1范数剪枝bias4.总结最先进的深度学习技术依赖于难以部署的过度参数化模型。相反,已知生物神经网络使用高效的稀疏连接。为了在不牺牲准确性的情况下减少内存、电池和硬件消耗,通过减少模型中的参数数量来确定压缩模型的最佳技术是很重要的。这反过来又允许您在设备上部署轻量级模型,并通过设备上的私
- css3-学习
江西谢霆锋
css3学习前端
css特性选择器基础选择器标签选择器ID选择器类选择器CSS的优先级是什么?!important>内联样式(style=“”)>ID选择器>类选择器=属性选择器=伪类>标签选择器=伪元素选择器。层级选择器foobar后代选择器,元素的后代元素foo>bar子代选择器,元素的子代元素foo+bar相邻同胞选择器foo~bar通用同胞选择器foo,bar并集选择器foo.class交集选择器条件选择器
- 深度学习模型压缩:非结构化剪枝与结构化剪枝的定义与对比
从零开始学习人工智能
深度学习剪枝人工智能
****在深度学习中,模型压缩是优化模型性能、降低存储和计算成本的重要技术之一。其中,剪枝(Pruning)是最常用的方法之一。根据剪枝的粒度和目标,剪枝可以分为非结构化剪枝(UnstructuredPruning)和结构化剪枝(StructuredPruning)。本文将详细介绍这两种剪枝方法的定义,并通过对比帮助读者更好地理解它们的差异。1.非结构化剪枝(UnstructuredPruning
- MySQL数据库架构设计:分片与分区策略实战
墨瑾轩
一起学学数据库【一】mysql数据库架构adb
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣在数据库的魔法森林中,MySQL就像是一位智慧的老树精,而分片(Sharding)与分区(Partitioning)则是它手中的两把神秘钥匙,能够打开数据高效存储与快速检索的大门。今天,我们就一起踏上一场奇幻之旅,探索如何运用这两把钥匙,打造一个既强大又灵活的
- Go语言 vs Java语言:核心差异与适用场景解析
By北阳
golangjava开发语言
在当今的软件开发领域,Go(Golang)和Java都是备受关注的后端开发语言。尽管二者都能构建高性能服务,但它们在设计哲学、语法特性和应用场景上存在显著差异。本文将从多个维度对比这两种语言,帮助开发者更好地理解它们的优缺点,并为技术选型提供参考。一、设计哲学与语言定位1.Go语言定位:专为高并发、分布式系统设计,强调简洁性和高效性。特点:语法简单,学习曲线平缓。静态编译为单一二进制文件,部署便捷
- 白话设计模式之(95):状态模式——优化代码状态管理的利器
一杯年华@编程空间
白话设计模式设计模式状态模式ui
白话设计模式之(95):状态模式——优化代码状态管理的利器大家好!在软件开发的学习过程中,我们都在不断探索如何让代码更加高效、灵活且易于维护。设计模式作为编程领域的重要工具,为我们解决各种复杂问题提供了有效的方案。今天,咱们深入探讨状态模式,它是一种优化代码状态管理的利器,能帮助我们处理对象在不同状态下的复杂行为。希望通过这篇博客,能和大家一起全面掌握状态模式,从基础概念到实际应用,深入理解其原理
- scikit-image(Scikit-image 是用于图像处理的 Python 包,使用原生的 NumPy 数组作为图像对象)
Clark-dj
图像处理pythonnumpy
Scikitimage中文开发手册-开发者手册-腾讯云开发者社区-腾讯云昨天搜索一个函数时无意间发现这个网站,今天来学习一下,仅作学习笔记。measureskimage.measure.approximate_polygon(coords,...)近似具有指定公差的多边形链。skimage.measure.block_reduce(image,block_size)通过对局部块应用函数来下采样图像
- 二叉树非递归遍历算法分析
小瓶子36
算法数据结构
以前没有学习过树的相关算法,只是了解一些皮毛,最近开始认真学习它。看视频或者网上查资料,可以知道怎么去遍历一棵树,但是算法为什么是这样的呢?少有讲到。如果有一天,我忘记了这个算法,我需要重新去看视频,看文档,这不是我想要的。我想要的是,知道这个算法是怎么设计出来的。下次我忘记的时候,我需要一支笔,一张纸,重新设计出这个算法,而不是去找资料看视频。我想要知道的是,为什么如此,而不是仅仅知道如此而已。
- DeepSeek使用教程
rider189
杂谈java职场和发展学习方法创业创新开发语言健康医疗媒体
一、教育行业:个性化学习与智能辅导机会点:智能作业批改:教师上传学生作业,DeepSeek自动识别答案并生成批改报告,节省80%人工时间。虚拟导师:学生输入数学题或编程问题,模型实时生成分步解析,支持追问互动,解决“卡壳”难题。个性化学习路径:根据学生测试结果,自动推荐课程和习题,提升学习效率30%以上。教程亮点:登录DeepSeek官网,进入“问答系统”模块,输入学科问题即可获取答案。上传学生作
- C语言之链表
小辉同志
C语言系列c语言链表开发语言
文章目录前言一、链表基本概念1、声明节点结构2、创建节点变量3、链表所有节点4、遍历链表二、add添加三、insert插入四、remove删除五、查找总结前言链表是一种重要的数据结构,用于存储和组织数据。它是由一系列节点组成的数据结构,每个节点包含一个数据元素和一个指向下一个节点的指针。链表相比于数组具有更灵活的插入和删除操作,但访问元素的效率较低。在本文中,我们将学习如何使用C语言实现链表,包括
- 探索DeepSeek:前端开发者不可错过的新一代AI技术实践指南
formerlyai
人工智能前端
引言:为什么DeepSeek成为技术圈焦点?最近,国产AI模型DeepSeek凭借其低成本训练、高性能输出和开源策略,迅速成为开发者社区的热门话题。作为覆盖语言、代码、视觉的多模态技术矩阵,DeepSeek不仅实现了与ChatGPT相媲美的能力,还通过强化学习驱动的架构创新,解决了大模型落地中的成本与效率瓶颈。对于前端开发者而言,DeepSeek的API接入能力和私有化部署方案,为智能应用开发提供
- 量子神经网络(Quantum Neural Network):结合量子计算的 AI 新探索
盼达思文体科创
人工智能和深度学习量子计算人工智能神经网络
一、引言在当今科技飞速发展的时代,人工智能(AI)和量子计算成为了两个备受关注的领域。量子神经网络(QuantumNeuralNetwork,QNN)作为这两个领域的交叉点,正吸引着越来越多的研究兴趣。QNN试图将量子计算的强大能力与传统神经网络的学习能力相结合,为解决复杂的人工智能问题提供新的思路和方法。二、量子计算基础(一)量子比特(Qubit)量子比特是量子计算的基本信息单位,与传统的比特不
- 产品经理知识体系学习与实践指南
liuyuanfeng_7
产品运营
新产品开发管理:从流程到体系0.3产品经理:角色与知识体系产品经理对产品生命周期的各个阶段,产品的孕育、创意、概念、开发、上市负责,以及对产品线和产品组合负责;不仅对实体产品负责,还要对服务、解决方案负责,对客户体验负责,对产品的运营和迭代负责。1.产品责任人2.迷你CEO3.客户代言人2.产品经理与项目经理的区别项目经理主要负责产品生命周期的某个阶段,如开发、上市、需求调研,最常见的是产品开发阶
- Blender学习方法与技巧
自动化专业爱好者
网络
以下是针对Blender零基础用户的学习教程推荐与高效学习方法总结,结合了多个优质资源整理而成,帮助快速入门:一、Blender学习方法与技巧制定学习计划与目标明确短期目标(如掌握基础操作)和长期目标(如独立完成场景建模),建议每天投入2-3小时系统学习。初期以熟悉界面、快捷键和基础工具为主,逐步过渡到建模、材质和渲染的综合应用。高效利用教程资源视频教程优先:视觉化学习更直观,推荐B站、YouTu
- 【算法学习之路】11.并查集
零零时
算法学习之路算法学习c++开发语言数据结构并查集c
并查集前言一.简介二.基础并查集三.基础并查集题目12四.种类并查集(扩展域并查集)五.种类并查集的题目前言我会将一些常用的算法以及对应的题单给写完,形成一套完整的算法体系,以及大量的各个难度的题目,目前算法也写了几篇,题单正在更新,其他的也会陆陆续续的更新,希望大家点赞收藏我会尽快更新的!!!一.简介查找两个元素是否在一个(树形)集合中二.基础并查集一开始:所有的元素相互独立,每个元素单独成树给
- 从剪枝到知识蒸馏:深度学习模型压缩与加速的多重策略
一键难忘
剪枝深度学习算法知识蒸馏
本文收录于专栏:精通AI实战千例专栏合集https://blog.csdn.net/weixin_52908342/category_11863492.html从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中文章目录从剪枝到知识蒸馏:深度学习模型压缩与加速的多重策略1.
- 从零开始开发微信小程序:全面指南
百态老人
经验分享微信小程序小程序
学习制作微信小程序,希望通过这次学习能够实现跨平台的统一开发,从而提高自己的编程和开发能力。第一部分需要事先准备的工具和环境:一、工具:1、微信开发者工具:用于开发、调试和预览微信小程序。微信开发者工具是专门为微信小程序开发提供的集成开发环境(IDE)。它的主要功能包括:1)开发:可以编写、编辑、管理小程序的代码,支持多种编程语言和框架(如JavaScript、TypeScript、WXML、WX
- macbook air怎么安装python_Python3安装完全攻略 Mac篇-Go语言中文社区
郑丢丢
macbookair怎么安装python
前言:mac系统自带python,不过以当前mac系统的最新版本为例,自带的python版本都是2.X版本,虽然不影响老版本项目的运行,但是python最新的3.X版本的一些语法与2.X版本并不相同,网上的教程大神们也肯定都更新出了最新版的教程,我们不论是学习还是使用,当然用最新版会更好一点。我的电脑是MacBookAir,系统版本是最新的macOSCatalina10.15.1一、熟悉系统自带的
- useSelector的第二个参数shallowEqual
BBbila
前端javascriptreact
先学习useSelector的含义与用法useSelector是React-Redux库提供的一个钩子(Hook),它允许函数组件从Reduxstore中提取数据。它是connect函数的替代方案,用于在React组件中访问Redux的状态。useSelector的作用:它接收一个选择器函数作为参数。选择器函数会接收到整个Redux的状态(state),并返回组件需要的部分状态。当Reduxsto
- PyTorch 模型剪枝实例教程一、非结构化剪枝
小风_
模型压缩与加速pytorchpytorch深度学习人工智能
目录1.导包&定义一个简单的网络2.获取网络需要剪枝的模块3.模块剪枝(核心)4.总结目前大部分最先进的(SOTA)深度学习技术虽然效果好,但由于其模型参数量和计算量过高,难以用于实际部署。而众所周知,生物神经网络使用高效的稀疏连接(生物大脑神经网络balabala啥的都是稀疏连接的),考虑到这一点,为了减少内存、容量和硬件消耗,同时又不牺牲模型预测的精度,在设备上部署轻量级模型,并通过私有的设备
- 行业首个AI课上线!粉笔战略布局加速技术商业化进程
量子位教育
继推出AI老师后,粉笔AI产品矩阵进一步扩充。粉笔宣布,将于3月17日上线基于自研垂域大模型打造的“AI刷题系统班”,为用户提供行测、申论全科目覆盖的一站式高效备考支持。粉笔介绍,AI刷题系统班以AI为主导,采用“名师+AI数字人老师”双师结合模式,资深教师直播授课,AI教师启发式教学,具备DeepSeek同款深度思考能力,由数字人老师全程伴学,提供交互式学习体验,依托AI算法实现用户全周期学习管
- LVI-SAM、VINS-Mono、LIO-SAM算法的阅读参考和m2dgr数据集上的复现(留作学习使用)
再坚持一下!!!
学习
ROS一键安装参考:ROS的最简单安装——鱼香一键安装_鱼香ros一键安装-CSDN博客opencv官网下载4.2.0参考:https://opencv.org/releases/page/3/nvidia驱动安装:ubuntu18.04安装显卡驱动-开始战斗-博客园cuda搭配使用1+2cuda安装1:Ubuntu18.04下安装CUDA_ubuntu18.04安装cuda-CSDN博客cuda
- Unreal Engine开发:Unreal Engine基础入门_静态网格物体与材质基础
chenlz2007
游戏开发2虚幻材质游戏引擎关卡设计网络java
静态网格物体与材质基础在上一节中,我们探讨了如何在UnrealEngine中创建和配置基本的游戏场景。现在,我们将深入学习静态网格物体(StaticMesh)和材质(Material)的基础知识,这是构建游戏世界的重要组成部分。静态网格物体什么是静态网格物体?静态网格物体是UnrealEngine中用于表示不可变形的3D物体的基本资源类型。它们通常用于游戏环境中的建筑、装饰物、地面等。静态网格物体
- SvelteKit 最新中文文档教程(4)—— 表单 actions
前言Svelte,一个语法简洁、入门容易,面向未来的前端框架。从Svelte诞生之初,就备受开发者的喜爱,根据统计,从2019年到2024年,连续6年一直是开发者最感兴趣的前端框架No.1:Svelte以其独特的编译时优化机制著称,具有轻量级、高性能、易上手等特性,非常适合构建轻量级Web项目。为了帮助大家学习Svelte,我同时搭建了Svelte最新的中文文档站点。如果需要进阶学习,也可以入手我
- 优化深度学习模型:PyTorch中的模型剪枝技术详解
代码之光_1980
深度学习pytorch剪枝
标题:优化深度学习模型:PyTorch中的模型剪枝技术详解在深度学习领域,模型剪枝是一种提高模型效率和性能的技术。通过剪枝,我们可以去除模型中的冗余权重,从而减少模型的复杂度和提高运算速度,同时保持或甚至提升模型的准确率。本文将详细介绍如何在PyTorch框架中实现模型剪枝,并提供相应的代码示例。1.模型剪枝的基本概念模型剪枝主要分为两种类型:结构化剪枝和非结构化剪枝。结构化剪枝通常指的是剪除整个
- Dropout: 一种减少神经网络过拟合的技术
冰蓝蓝
自然语言处理神经网络人工智能深度学习
在深度学习中,过拟合是一个常见的问题,尤其是在模型复杂度较高或训练数据较少的情况下。过拟合意味着模型在训练数据上表现得很好,但在未见过的数据上表现不佳,即泛化能力差。为了解决这个问题,研究者们提出了多种正则化技术,其中之一就是Dropout。什么是Dropout?Dropout是一种正则化技术,由Hinton和他的学生在2012年提出。它通过在训练过程中随机“丢弃”(即暂时移除)网络中的一些神经元
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc