作者
寒武纪AE团队,腾讯云容器中心边缘计算团队,SuperEdge 开发者
SuperEdge 支持国产智能加速卡寒武纪 MLU220
SuperEdge 对应的商业产品 TKE Edge 也一直在硬件和加速方面在持续耕耘,不但支持 NVIDIA 系列 GPU的加速,还在 GPU 虚拟,QGPU 化等方面持续发力。本次联合寒武纪对国产智能边缘加速卡进行了支持,以利于用户在边缘进行模型训练和边缘智能推理性能的提升。下面是经过寒武纪 AE 团队和 SuperEdge 开源团队的联合测试,对国产寒武纪边缘计算加速卡兼容性的联合声明。
中科寒武纪科技股份有限公司的边缘智能加速卡 MLU220-M.2和分布式边缘容器管理系统 SuperEdge 与相互兼容,能够对搭载M.2的边缘设备在视频、图像、语音等应用上提供数十倍的加速能力,
在此发表联合声明。
下面给出两个分类网络在 CPU 和 M.2 上的吞吐性能对比。
网络模型 | M.2(fps) | CPU(fps) |
---|---|---|
vgg16 | 184 | 13 |
resnet50 | 417 | 29 |
可以看出 vgg16 M.2 是普通 i7-8700K的14倍,Resnet50 也是普通 i7-8700K 的14倍。
其中,CPU 采用的是 Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz
SuperEdge 边缘容器解决方案
SuperEdge 是2020年12月腾讯云联合英特尔、VMware 威睿、虎牙、寒武纪、美团、首都在线发布的基于原生Kubernetes 的边缘分布式容器管理系统。该系统把云原生能力扩展到边缘侧,很好的实现了云端对边缘端的管理和控制,极大简化了应用从云端部署到边缘应用的过程。2021年9月已被 CNCF 基金会接受,成为 CNCF Sandbox项目,由 CNCF 监管和运维。
SuperEdge提供了如下能力:
边缘自治
云边网络往往是弱网络,中间可能是有线、无线、WIFI……连接,可能是4G、5G网络,云边断链是常态。断连时间不定,短则三五分钟,长则数小时、几天,那么如何保证边缘服务不被驱逐,继续提供正常服务呢?
SuperEdge 的边缘自治能力,可以保证云边断连的情况下,边缘服务继续稳定运行,即使边缘节点断电重启,也能自动恢复已经部署到该节点的边缘服务继续运行。
分布式健康检查
SuperEdge 提供的边缘分布式健康检查能力有两个作用:
- 只要边缘节点正常,边缘服务就不会驱逐
SuperEdge 会在每个边缘节点部署一个 edge-health 的 deamonset,同一个边缘 Kubernetes 集群的节点会定期 Check 彼此,对彼此的健康性进行投票,并将投票结果反馈到云端。即使边缘 Kubernetes 集群的一个节点云边网络断连,其他节点也会把他的健康性反馈到云端,就不会对该节点进行驱逐。 - 可分组进行分布式健康检查
即把边缘 Kubernetes 集群的边缘节点分成多个组(同一机房,或者同一地域),每个组内的节点之间相互检查。这样做的好处是避免集群规模增大后节点之间的 Check 数据交互变大,占用节点流量,投票结果也难以达成一致的情况。
edge-health 的设计避免了由于云边网络不稳定造成的大量的 Pod 迁移和重建,保证了边缘服务的稳定。
服务访问控制
SuperEdge 自研的 ServiceGroup 实现了基于边缘计算的服务访问控制,主要有三个作用:
- 一键把边缘服务部署到不同站点
可以一键把同一套服务部署到位于同一边缘 Kubernetes 集群的不同站点,各个站点的服务完全保持一致。该特性目前支持 DeploymentGrid 以及 ServiceGrid 两种 Custom Resource,可以便捷的在同一个集群的多个机房或区域中各部署一组服务。 - 同一站点可实现流量闭环
各个站点虽然有同一套服务,但是会把本站点的访问只锁定本站点内,不会跨站点去访问其他站点的同一套服务。 - 新站点自动部署相应服务
新加入的站点,可指定服务标签自动部署同一套站点服务,为站点扩展提供了自动部署服务的支持。
云边隧道
边缘节点一般是没有公网IP的,或者在一个NAT网络背后,云端无法直接访问边缘节点,这就使得 kubectl logs、kubectl exec……等云端访问边缘节点的请求完全失灵。
SuperEdge 自研的云边自建隧道(目前支持TCP、HTTP、HTTPS、ssh)打通了不同网络环境下的云边连接问题。实现对无公网 IP 边缘节点的云端统一操作和维护。
批量添加局域网边缘节点及远程运维局域网边缘节点
为了解决生产环境海量边缘节点的接入,SuperEdge 团队特提供了penetrator-controller组件支持了局域网内成千上万边缘节点的接入,并且还可以在云端远程登录到局域网内的边缘节点进行远程运维。
更多的特性可登录 SuperEdge 官网:https://superedge.io 进行查看,合作交流可在社区https://github.com/superedge/superedge 提 Issuse。
MLU220 是什么?
MLU220-M.2 是寒武纪为边缘计算专门打造的加速卡,它在手指大小的标准M.2加速卡上集成了 8TOPS 理论峰值性能,功耗仅为 8.25W,可以轻松实现终端设备和边缘端设备的 AI 赋能方案。支持视觉、语音、自然语言处理以及传统机器学习等多样化的人工智能应用,实现各种业务的边缘端智能化解决方案。
MLU220 具有如下特性:
-
小个头大智能
思元220芯片是面向边缘侧量身定制的智能化解决方案,在 U 盘大小的尺寸下就可以提供8路高清视频的实时智能分析,可广泛支持视觉、语音、自然语言处理以及传统机器学习等高度多样化的人工智能应用,为边缘计算节点装上智慧的大脑。 -
新一代寒武纪硬件架构
MLUv02 架构不是简单的从上一代升级而来,新架构基于片上网络(NOC)构建,多个 NPU 集群的并行效率。基于硬件的片内数据压缩,提升缓存有效容量和带宽。新架构提供 INT16,INT8,INT4,FP32,FP16 的全面 AI 精度支持,满足多样化神经网络的计算力要求,通用、性能兼备。 -
计算弹性和可编程
思元220芯片支持多类神经网络,NeuWare 软件栈可以轻松部署推理环境。BANG Lang 编程环境可对计算资源做直接定制,满足多样化 AI 定制要求,专业而不专用。 -
加速卡硬件规格
加速卡硬件规格可概括如下:
参数 规格 型号 MLU220-M.2 内存 4GB, LPDDR4, 3200MHz AI算力 8TOPS(INT8) 编解码能力 支持H.264,H.265, VP8, VP9;解码8x1080P@30Hz;编码4x1080P@30Hz 图片解码 支持JEPG最大分辨率8K;解码410 fps@1080P;编码400 fps@1080P 接口规格 M.2 2280, B+M Key (PCIE 3.0 X2) 功耗 8.25W (3.3V 2.5A) 结构尺寸 80mm x 22mm x 7.3mm(无散热)/21.3mm(带散热) 散热 被动散热
MLU220 能用来做什么?
MLU220 小巧的体积,强大的算力,使得它可广泛应用于智慧交通、智能电网、智能制造、智能金融等边缘计算场景,下面是一些典型的应用场景的介绍:
智慧交通
为保障道路安全和有序,在城市中的十字路口和关键道路部署多路摄像头及 MLU220 边缘加速卡。
MLU220 可实现对多路摄像头输入图像的解码处理;基于深度学习技术,MLU220 可实现对监控路段的行人,机动车,和非机动车的检测,跟踪及结构化,在交通业务上进一步做到智能车流人流统计,违法抓拍取证,关键人车的识别抓取等,极大提高交通部门效率。
智慧工厂
为打造现代化智能制造的智慧工厂,在厂区工位部署多路摄像头及 MLU220 边缘加速卡。
凭借独立的编解码单元,MLU220 可实现对多路摄像头图像的解码;在强大的算力支持下,MLU220 可实现对工人的检测,姿态识别以及对工件的检测和识别,从而实现检测工人是否在岗,工人操作是否合规以及工件是否按规定摆放等工厂的智能管理。
智慧畜牧
为实现畜牧业生产管理,安全健康监控和养殖环境智能检测,在养殖基地部署多路摄像头和 MLU220 边缘加速卡;通过深度学习技术,实现对种猪的识别,检测,实例分割和跟踪,进一步实现对种猪的点数,健康检测,吃食统计,屠宰辅助等智能养殖技术,减少人力成本,提供养殖效率。
如何在 SuperEdge 上使用寒武纪 MLU220
我们基于 SuperEdge 演示如何使用寒武纪边缘智能加速卡:
用 edgeadm 创建一个 SuperEdge 边缘 Kubernetes 集群
-
下载 edgeadm 安装包
arch=amd64 version=v0.6.0 && rm -rf edgeadm-linux-* && wget https://superedge-1253687700.cos.ap-guangzhou.myqcloud.com/$version/$arch/edgeadm-linux-$arch-$version.tgz && tar -xzvf edgeadm-linux-* && cd edgeadm-linux-$arch-$version && ./edgeadm
-
初始化边缘 Kubernetes Master 节点
./edgeadm init --kubernetes-version=1.18.2 --image-repository superedge.tencentcloudcr.com/superedge --service-cidr=10.96.0.0/12 --pod-network-cidr=192.168.0.0/16 --install-pkg-path ./kube-linux-*.tar.gz --apiserver-cert-extra-sans=
--apiserver-advertise-address= --enable-edge=true -
加入一个带寒武纪边缘智能加速卡的边缘节点
./edgeadm join
:Port --token xxxx --discovery-token-ca-cert-hash sha256:xxxxxxxxxx --install-pkg-path --enable-edge=true 关于 edgeadm 安装边缘 Kubernetes 集群的详细介绍可参考:用 edgeadm 一键安装边缘 K8s 集群和原生 K8s 集群
安装寒武纪边缘智能加速卡的插件
-
安装边缘智能加速卡的插件
kubectl create -f https://github.com/Cambricon/cambricon-k8s-device-plugin/blob/master/device-plugin/examples/cambricon-device-plugin-daemonset.yaml
-
检查插件是否安装成功
kubectl get node <边缘节点NodeName> -o json --output="jsonpath={.status.allocatable}"
看到边缘节点 node status.allocatable 有 cambricon.com/mlu 有相关资源值表示边缘智能加速卡及插件安装成功。
"allocatable": { "cambricon.com/mlu": "1", ## MUL卡资源 "cpu": "12", ... "memory": "16164684Ki", "pods": "110" }
看到
allocatable
里面存在cambricon.com/mlu
并且其资源值大于等于0,表示寒武纪边缘智能加速卡及其插件已经安装成功。mlu插件下载地址:https://github.com/Cambricon/cambricon-k8s-device-plugin
mlu监控组件:https://github.com/Cambricon/mlu-exporter
使用边缘智能加速卡进行边缘应用加速
在提交边缘相应负载的时候指定 cambricon.com/mlu
来应用寒武纪边缘智能加速卡进行加速, 比如:
apiVersion: v1
kind: Pod
...
spec:
containers:
- image: 10.13.30.52:5000/yolov4:latest
name: yolov4-ctr
resources:
limits:
cambricon.com/mlu: 1 ## 指定加速卡limits
requests:
cambricon.com/mlu: 1 ## 指定加速卡requests
...
未来
未来寒武纪和腾讯云会在边缘硬件和边缘云服务上进行更多的合作,为边缘 AI、边缘 IoT,数字化,人工智能……进行软硬件的赋能,并且相应能力在相关的商业产品中对用户提供支持,欢迎关注腾讯云边缘计算云平台 TKE Edge 和寒武纪相关加速商业产品,试用体验边缘更多的加速产品。
关于我们
更多关于云原生的案例和知识,可关注同名【腾讯云原生】公众号~
福利:
①公众号后台回复【手册】,可获得《腾讯云原生路线图手册》&《腾讯云原生最佳实践》~
②公众号后台回复【系列】,可获得《15个系列100+篇超实用云原生原创干货合集》,包含Kubernetes 降本增效、K8s 性能优化实践、最佳实践等系列。