- SpringBoot多数据源动态切换方案:AbstractRoutingDataSource详解
fanxbl957
Webspringboot后端java
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人SpringBoot多数据源动态切换
- Puppeteer 库简介:背景、用法与原理
超级土豆粉
typescriptjavascript前端html开发语言
Puppeteer库简介:背景、用法与原理一、背景Puppeteer是Google官方推出的一个Node.js库,最初于2017年发布。它为开发者提供了一个高级API,用于通过编程方式控制Chrome或Chromium浏览器。Puppeteer主要用于自动化网页操作、爬虫、UI测试、生成PDF截图等场景。随着Web自动化需求的增长,Puppeteer逐渐成为前端开发、测试和数据采集领域的重要工具。
- 深入解读MaaS技术架构:从模型服务到智能部署的全流程分析
Cc不爱吃洋葱
架构人工智能大语言模型大模型智能部署MaaS技术架构LLM
随着人工智能(AI)的迅速发展,MaaS(ModelasaService,模型即服务)技术架构应运而生。它通过将复杂的AI模型封装为标准化服务,降低了模型的开发和部署门槛,帮助企业快速实现业务场景的智能化升级。本文将深入解析MaaS技术架构,详细阐述其各个组成部分以及如何在实际应用中高效发挥其功能。一、使用方层:从应用接入到业务赋能MaaS技术架构的顶层是使用方层,它主要面向第三方应用,是企业与M
- gRPC服务发现
叹人间,美中不足今方信
服务发现gorpc
基于etcd实现的服务发现,按照非规范化的etcdkey实现,详细见代码注释。packagediscoveryimport("context""encoding/json""fmt""go.etcd.io/etcd/api/v3/mvccpb"clientv3"go.etcd.io/etcd/client/v3""google.golang.org/grpc/resolver""strings""
- 人工智能LLM | 基础配置 | 通过环境变量配置API-KEY 一文通教程
H-大叔
人工智能大模型实战与教程人工智能
在实战开发大语言模型的过程中,经常会遇到各种API-KEY的配置问题,例如GPTOpenAIKEY的配置,而且目前大部分都要求将其配置在环境变量中,下面将会讲解如何在Linux、macOS、Windows中配置,本文一文通教程。您可以使用配置环境变量的方法,避免在调用各种SDK时显式地配置API-KEY,从而降低泄漏风险。环境变量是操作系统中用于存储有关系统环境的信息的变量。您可以通过环境变量来配
- 【人工智能】ChatGPT、DeepSeek-R1、DeepSeek-V3 辨析
G皮T
#大语言模型人工智能LLM大语言模型chatgptdeepseekDeepSeek-R1DeepSeek-V3
ChatGPT、DeepSeek-R1、DeepSeek-V3辨析1.ChatGPT对比DeepSeek1.1技术相似点1.2主要差异1.3关键区别1.4如何选择1.5总结2.DeepSeek-R1对比DeepSeek-V32.1DeepSeek-R12.2DeepSeek-V32.3核心区别总结2.4如何选择3.R1和V3有什么含义3.1DeepSeekR1的"R"3.2DeepSeekV3的"
- 服务器无对应cuda版本安装pytorch-gpu[自用]
片月斜生梦泽南
pytorch
服务器无对应cuda版本安装pytorch-gpu服务器无对应cuda版本安装pytorch-gpu网址下载非root用户安装tmux查看服务器ubuntu版本conda安装tensorflow-gpu安装1.x版本服务器无对应cuda版本安装pytorch-gpu网址GPU版本的pytorch、pytorchvision的下载链接https://download.pytorch.org/whl/
- 在学校研究学习的偏算法,秋招投递开发岗位还有希望吗
程序员
前言Thelasttime,Ihavelearned这是星球同学,在周五晚上答疑聊天的时候对我的提问:如果简历上的项目偏算法,但是自学了一些操作系统和计网的知识,秋招的时候投递偏开发的岗位有希望吗?简历上是否也要加上相关项目?估计也是很多朋友的疑问,毕竟很多同学读研,有些老师疯狂push,要成果,发论文。要想尽快发论文,那只能“研究”人工智能、算法的一些东西了。但是众所周知,算法要求很高,不仅要求
- 【AI论文】基于图像思维的多模态推理:理论基础、方法及未来前沿
东临碣石82
人工智能
摘要:近期,文本思维链(Chain-of-Thought,CoT)显著推动了多模态推理的进展。在这一范式下,模型在语言层面进行推理。然而,这种以文本为中心的方法将视觉信息视为静态的初始语境,从而在丰富的感知数据与离散的符号思维之间造成了根本性的“语义鸿沟”。人类认知往往超越语言的局限,将视觉作为动态的心理草图板加以利用。如今,人工智能领域也正经历着类似的演变,标志着从仅能对图像进行思考的模型向真正
- DeepSeek 帮助自己的工作
引言简述人工智能助手在职场中的普及趋势DeepSeek作为智能创作助手的核心功能概述DeepSeek的核心能力信息检索与整合:基于用户意图精准搜索并生成答案多场景应用:技术文档撰写、数据分析、代码生成等交互优化:遵循用户指定的格式与内容规范职场应用场景与实操案例技术文档撰写自动生成API文档框架根据需求补充技术细节示例代码块与公式的规范化输出数据分析支持快速检索行业数据并生成可视化建议数学建模中的
- 探索Unity游戏AI的新境界:流体行为树(Fluid Behavior Tree)
探索Unity游戏AI的新境界:流体行为树(FluidBehaviorTree)fluid-behavior-treeBehaviortreesforUnity3Dprojects.Writtenwithacodedrivenapproachonthebuilderpattern.项目地址:https://gitcode.com/gh_mirrors/fl/fluid-behavior-tree在
- 推荐使用:Fluid Behavior Tree - 优雅的Unity AI行为树库
推荐使用:FluidBehaviorTree-优雅的UnityAI行为树库fluid-behavior-treeBehaviortreesforUnity3Dprojects.Writtenwithacodedrivenapproachonthebuilderpattern.项目地址:https://gitcode.com/gh_mirrors/fl/fluid-behavior-tree行为树(
- 人工智能-基础篇-23-智能体Agent到底是什么?怎么理解?(智能体=看+想+做)
weisian151
人工智能人工智能
1、智能体是什么?想象你有一个超级聪明的小助手,它能:自己看环境(比如看到天气、听到声音、读到数据);自己做决定(比如下雨了要关窗,电量低要去充电);自己动手干活(比如帮你订外卖、打扫房间、开车);越用越聪明(比如记住你的习惯,下次不用你提醒)。这个“小助手”就是智能体(Agent)——它是一个能自主感知、思考、行动并学习的系统,可以是软件(比如手机里的AI助手)、硬件(比如机器人),或者软硬结合
- 多角色AI Agent:基于LLM的虚拟角色扮演系统
AI天才研究院
AI人工智能与大数据人工智能ai
多角色AIAgent:基于LLM的虚拟角色扮演系统关键词多角色AIAgentLargeLanguageModel(LLM)虚拟角色扮演系统人工智能自然语言处理程序设计摘要本文旨在探讨多角色AIAgent的基础知识以及其如何在虚拟角色扮演系统中发挥作用。我们将首先介绍多角色AIAgent的概念、历史背景和基本原理。随后,我们将深入探讨LLM(大语言模型)在虚拟角色扮演系统中的应用,包括其工作原理、核
- 【算法】解数独:C++ 实现与策略探讨
master_chenchengg
算法提升算法java开发语言
【算法】解数独:C++实现与策略探讨一、引言:C++算法技术的魔力与解数独的智慧二、技术概述:数独求解的艺术定义与技术框架核心特性和优势代码示例:基础回溯解法三、技术细节:解数独的逻辑与挑战原理解析难点分析四、实战应用:从游戏到人工智能应用场景解决方案展示五、优化与改进潜在问题改进建议六、常见问题与解决方案七、总结与展望一、引言:C++算法技术的魔力与解数独的智慧在算法领域,C++凭借其高效、灵活
- FastMCP:用于构建MCP服务器的开源Python框架
NetX行者
AI编程服务器开源python
在人工智能领域,模型上下文协议(ModelContextProtocol,简称MCP)作为一种标准化的协议,为大型语言模型(LLM)提供了丰富的上下文和工具支持。而FastMCP作为构建MCP服务器和客户端的Python框架,以其简洁的API设计、高效的开发体验以及强大的扩展能力,正逐渐成为开发者们的首选工具。一、FastMCP简介FastMCP是一个用于构建MCP服务器和客户端的Python框架
- Ubuntu下安装多版本CUDA及灵活切换全攻略
芯作者
D2:ubuntulinuxubuntu
——释放深度学习潜能,告别版本依赖的烦恼!**为什么需要多版本CUDA?在深度学习、科学计算等领域,不同框架(TensorFlow、PyTorch等)对CUDA版本的要求各异。同时升级框架或维护旧项目时,版本冲突频发。多版本CUDA共存+一键切换是高效开发的刚需!本文将手把手教你实现这一能力,并分享独创的“动态软链接+环境隔离”技巧,让版本管理行云流水!环境准备硬件要求NVIDIA显卡(支持CUD
- Python在人工智能领域的实际应用:示例代码解析
辣条yyds
pythonpython人工智能开发语言
摘要:本文将通过几个典型的人工智能应用场景,展示Python在图像识别、自然语言处理、推荐系统等方面的高级用法。通过示例代码,带大家深入理解Python在人工智能领域的实际应用。正文:Python作为一门流行的编程语言,凭借其简洁的语法、丰富的库和框架,成为了人工智能(AI)领域的主流开发语言。下面,我们将通过几个示例,探讨Python在人工智能方向的实际应用。示例一:图像识别-使用OpenCV进
- Tansformer的Multi-Head Attention组件
数字化与智能化
大模型基础Transformer框架transformer多头注意力机制
一、Transformer的注意力机制Transformer的注意力机制是对传统序列建模方法的颠覆性创新。它通过全局并行的关联计算解决了RNN的效率与长距离依赖瓶颈,通过动态权重和多头设计增强了模型对复杂信息的捕捉能力,最终成为现代人工智能的核心技术基石。其意义不仅在于提升了模型性能,更在于提供了一种“计算关联”的通用思路,推动了人工智能向更高效、更通用的方向发展。在Transformer之前,循
- 树莓派ubuntu安装jdk17
编程大玩家
java编程开发后端开发linux运维服务器树莓派jdk
jdk17已经成为主流,我自己日常使用都是基于java17,打算在树莓派搭建一个tomcat,所以先来安装一下jdk环境。我的设备是树莓派3B+,安装的系统镜像是:ubuntu-22.04.1-preinstalled-server-arm64+raspi.img接下来开始安装JDK,咱们只说重点,喜欢的朋友给点点赞。1.添加软件仓库,更新仓库数据sudoadd-apt-repositoryppa
- 2025年社会学与安全科学国际会议 (ICSSS 2025)
2025年社会学与安全科学国际会议(ICSSS2025)-融合创新,共筑安全大会地点:中国·成都大会信息会议简称:ICSSS2025收录检索:提交EiCompendex,CPCI,CNKI,GoogleScholar等审稿通知:投稿后2-3日内通知(二)会议简介2025年社会学与安全科学国际会议(ICSSS2025)将在中国成都盛大召开。这是一个汇聚全球顶尖学者、研究人员和行业专家的平台,专注于探
- 生成式人工智能实战 | 条件生成对抗网络(conditional Generative Adversarial Network, cGAN)
盼小辉丶
生成对抗网络神经网络深度学习生成式人工智能pytorch
生成式人工智能实战|条件生成对抗网络0.前言1.条件生成对抗网络1.1GAN基础回顾1.2cGAN核心思想2.cGAN网络架构2.1数学原理2.2网络架构3.实现cGAN3.1环境准备与数据加载3.2模型构建3.3模型训练0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来深度学习领域最具突破性的技术之一,能够生成逼真的图像、音频甚至文本。然而,传统的G
- 【人工智能】Maas(模型即服务)(Model as a Service)是一种基于云计算的商业模式,通过API将预训练的人工智能模型作为服务提供给用户,使其无需自行管理底层基础设施即可调用AI能力。
本本本添哥
A-AIGC人工智能大模型人工智能云计算
ModelasaService(模型即服务,MaaS)是一种基于云计算的商业模式,通过API将预训练的人工智能模型作为服务提供给用户,使其无需自行管理底层基础设施即可调用AI能力。MaaS通过云原生架构和标准化服务,正在重塑AI技术的开发和消费方式,推动人工智能从“技术专有”向“普惠工具”转变。以下是其核心要点:1.定义与核心理念MaaS将大模型(如GPT-3、多模态模型等)封装为标准化服务,用户
- 【PaddleOCR】快速集成 PP-OCRv5 的 Python 实战秘籍--- 实例化 OCR 对象的 predict() 方法介绍
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- Python 机器学习实战:Scikit-learn 算法宝典,从线性回归到支持向量机
清水白石008
pythonPython题库python机器学习算法
Python机器学习实战:Scikit-learn算法宝典,从线性回归到支持向量机引言各位Python工程师,大家好!欢迎来到激动人心的机器学习世界!在这个数据驱动的时代,机器学习已经渗透到我们生活的方方面面,从智能推荐系统到自动驾驶汽车,都离不开机器学习技术的支撑。作为一名Python开发者,掌握机器学习技能,无疑将为您的职业发展注入强大的动力,让您在人工智能浪潮中占据先机。Scikit-lea
- 提示词工程在实体关系抽取中的创新
AI天才研究院
计算ChatGPTAI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
1.5概念结构与核心要素组成在深入探讨提示词工程在实体关系抽取中的应用之前,我们需要对其概念结构与核心要素组成有一个清晰的理解。这一部分将介绍提示词工程的基本框架,以及实体关系抽取的关键技术。提示词工程的基本框架提示词工程(PromptEngineering)是指利用人工智能技术和自然语言处理方法,设计并优化用于训练语言模型的输入提示(prompt),以达到特定任务目标的过程。其核心框架包括以下几
- 别再瞎摸索了!HarmonyOS AI 字幕控件用法全解析
引言现在视频、音频这些多媒体内容越来越多,用户对字幕的需求也跟着水涨船高,毕竟谁不想轻松看懂听不懂的内容呢?而且这两年人工智能技术发展得这么快,早就该用到字幕领域了——以前全靠人工打字幕,费时费力还容易出错,现在有了AI帮忙,简直是解放双手!正好HarmonyOS推出了AI字幕控件,这东西能自动识别语音、生成字幕,一下子就让视频和音频内容变得更易用了。对咱们做鸿蒙原生应用的人来说,更是省了大事儿—
- Python机器学习入门必看!从原理到实战,手把手教你线性回归模型
小张在编程
python机器学习线性回归
引言在人工智能浪潮席卷全球的今天,机器学习(MachineLearning)早已不再是实验室的“黑科技”——打开购物APP的“猜你喜欢”、输入搜索词后的“相关推荐”、甚至天气预报中的温度预测,背后都有机器学习模型的身影。而在线性回归(LinearRegression)作为机器学习中最基础、最经典的监督学习模型,堪称机器学习的“敲门砖”。本文将从原理到实战,带你彻底掌握这一核心算法。一、机器学习的“
- 【linux】ssh 远程执行命令自动输入密码方式
檀越@新空间
s5Linux学习linuxssh服务器
欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。✨✨欢迎订阅本专栏✨✨博客目录一.自动输入密码二.sshpass方式1.安装sshpass2.源码下载3.安装过程4.验证三.expect方式1.脚本2.执行前些天发现了一个巨牛的人工智能
- ubuntu22.04从新系统到tensorflow GPU支持
澍龑
tensorflow人工智能
ubuntu22.04CUDA从驱动到tensorflow安装0系统常规设置和软件安装0.1挂载第二硬盘默认Home0.2软件安装0.3安装指定版本的python0.4python虚拟环境设置1直接安装1.1配置信息1.2驱动安装1.3集显显示,独显运算(其它debug用)1.4卸载驱动(备用,未试)日常使用ssh后台运行(断联不中断)0系统常规设置和软件安装0.1挂载第二硬盘默认Homesudo
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号