hadoop+hive+hbase的整合开发(配置加测试)

用hbase做数据库,但由于hbase没有类sql查询方式,所以操作和计算数据非常不方便,于是整合hive,让hive支撑在hbase数据库层面 的 hql查询.hive也即 做数据仓库 

1. 基于Hadoop+Hive架构对海量数据进行查询:http://blog.csdn.net/kunshan_shenbin/article/details/7105319 
2. HBase 0.90.5 + Hadoop 1.0.0 集成:http://blog.csdn.net/kunshan_shenbin/article/details/7209990 
本文的目的是要讲述如何让Hbase和Hive能互相访问,让Hadoop/Hbase/Hive协同工作,合为一体。 
本文测试步骤主要参考自:http://running.iteye.com/blog/898399 
当然,这边博文也是按照官网的步骤来的:http://wiki.apache.org/hadoop/Hive/HBaseIntegration 
1. 拷贝hbase-0.90.5.jar和zookeeper-3.3.2.jar到hive/lib下。 
注意:如何hive/lib下已经存在这两个文件的其他版本(例如zookeeper-3.3.1.jar),建议删除后使用hbase下的相关版本。 
2. 修改hive/conf下hive-site.xml文件,在底部添加如下内容: 
查看源码
打印 ?
01 [html] view plaincopy
02  
09    
10   
11   hive.querylog.location  
12   /usr/local/hive/logs  
13   
14    
15  
16   hive.aux.jars.path  
17   file:///usr/local/hive/lib/hive-hbase-handler-0.8.0.jar,file:///usr/local/hive/lib/hbase-0.90.5.jar,file:///usr/local/hive/lib/zookeeper-3.3.2.jar 
18  
19


注意:如果hive-site.xml不存在则自行创建,或者把hive-default.xml.template文件改名后使用。 
具体请参见:http://blog.csdn.net/kunshan_shenbin/article/details/7210020 

3. 拷贝hbase-0.90.5.jar到所有hadoop节点(包括master)的hadoop/lib下。 
4. 拷贝hbase/conf下的hbase-site.xml文件到所有hadoop节点(包括master)的hadoop/conf下。 
注意,hbase-site.xml文件配置信息参照:http://blog.csdn.net/kunshan_shenbin/article/details/7209990 
注意,如果3,4两步跳过的话,运行hive时很可能出现如下错误: 
1 [html] view plaincopy
2 org.apache.hadoop.hbase.ZooKeeperConnectionException: HBase is able to connect to ZooKeeper but the connection closes immediately.  
3 This could be a sign that the server has too many connections (30 is the default). Consider inspecting your ZK server logs for that error and  
4 then make sure you are reusing HBaseConfiguration as often as you can. See HTable's javadoc for more information. at org.apache.hadoop. 
5 hbase.zookeeper.ZooKeeperWatcher.


参考:http://blog.sina.com.cn/s/blog_410d18710100vlbq.html 

现在可以尝试启动Hive了。 
单节点启动: 
1 > bin/hive -hiveconf hbase.master=master:60000

集群启动: 
1 > bin/hive -hiveconf hbase.zookeeper.quorum=slave

如何hive-site.xml文件中没有配置hive.aux.jars.path,则可以按照如下方式启动。 
1 > bin/hive --auxpath /usr/local/hive/lib/hive-hbase-handler-0.8.0.jar, /usr/local/hive/lib/hbase-0.90.5.jar, /usr/local/hive/lib/zookeeper-3.3.2.jar -hiveconf hbase.zookeeper.quorum=slave


接下来可以做一些测试了。 
1.创建hbase识别的数据库: 
[sql] view plaincopy 
CREATE TABLE hbase_table_1(key int, value string)  
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val")  
TBLPROPERTIES ("hbase.table.name" = "xyz");  
hbase.table.name 定义在hbase的table名称 
hbase.columns.mapping 定义在hbase的列族 
2.使用sql导入数据 
a) 新建hive的数据表 
[sql] view plaincopy 
hive> CREATE TABLE pokes (foo INT, bar STRING);  
b) 批量插入数据 
[sql] view plaincopy 
1 hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE
pokes;  
c) 使用sql导入hbase_table_1 
[sql] view plaincopy 
hive> INSERT OVERWRITE TABLE hbase_table_1 SELECT * FROM pokes WHERE foo=86;  
3. 查看数据 
[sql] view plaincopy 
hive> select * from  hbase_table_1;  
这时可以登录Hbase去查看数据了. 
> /usr/local/hbase/bin/hbase shell 
hbase(main):001:0> describe 'xyz'   
hbase(main):002:0> scan 'xyz'   
hbase(main):003:0> put 'xyz','100','cf1:val','www.360buy.com' 
这时在Hive中可以看到刚才在Hbase中插入的数据了。 
hive> select * from hbase_table_1 
4. hive访问已经存在的hbase 
使用CREATE EXTERNAL TABLE 
[sql] view plaincopy 
CREATE EXTERNAL TABLE hbase_table_2(key int, value string)  
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
WITH SERDEPROPERTIES ("hbase.columns.mapping" = "cf1:val")  
TBLPROPERTIES("hbase.table.name" = "some_existing_table");  


多列和多列族(Multiple Columns and Families) 
1.创建数据库 
Java代码  
CREATE TABLE hbase_table_2(key int, value1 string, value2 int, value3 int)   
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
WITH SERDEPROPERTIES (  
"hbase.columns.mapping" = ":key,a:b,a:c,d:e"  
);  
********如果在hbase已经存在表了,那么就要创建EXTERNAL表。
2.插入数据 
Java代码  
INSERT OVERWRITE TABLE hbase_table_2 SELECT foo, bar, foo+1, foo+2   
FROM pokes WHERE foo=98 OR foo=100;  


这个有3个hive的列(value1和value2,value3),2个hbase的列族(a,d) 
Hive的2列(value1和value2)对应1个hbase的列族(a,在hbase的列名称b,c),hive的另外1列(value3)对应列(e)位于列族(d) 

3.登录hbase查看结构 
Java代码  
1 hbase(main):003:0> describe "hbase_table_2" 
2 DESCRIPTION                                                             ENABLED                                
3  {NAME => 'hbase_table_2', FAMILIES => [{NAME => 'a', COMPRESSION => 'Ntrue                                   
4  ONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_M                                        
5  EMORY => 'false', BLOCKCACHE => 'true'}, {NAME => 'd', COMPRESSION =>                                         
6  'NONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN                                        
7  _MEMORY => 'false', BLOCKCACHE =>'true'}]}                                                                   
8 1 row(s) in 1.0630 seconds


4.查看hbase的数据 
Java代码  
1 hbase(main):004:0> scan 'hbase_table_2' 
2 ROW                          COLUMN+CELL                                                                       
3  100                         column=a:b, timestamp=1297695262015, value=val_100                                
4  100                         column=a:c, timestamp=1297695262015, value=101                                    
5  100                         column=d:e, timestamp=1297695262015, value=102                                    
6  98                          column=a:b, timestamp=1297695242675, value=val_98                                 
7  98                          column=a:c, timestamp=1297695242675, value=99                                     
8  98                          column=d:e, timestamp=1297695242675, value=100                                    
9 2 row(s) in 0.0380 seconds


5.在hive中查看 
Java代码  
1 hive> select * from hbase_table_2; 
2 OK 
3 100     val_100 101     102 
4 98      val_98  99      100 
5 Time taken: 3.238 seconds

你可能感兴趣的:(hive,Hbase,hadoop,Hive,Hadoop,Hbase)