目录
1. Abstract & Introduction
2. Related Work
3. Proposed methodology
3.1 算法框架
3.2 WAMMA中的窗口定义
3.3 Adaptive Window to Capture Transients
3.4 Multi-timescale Window Screening
3.5 Threshold Updating
3.6 Load Signatures and Sequential Load Signature Tree
本文是针对以下论文的学习摘要,先主要针对其中事件检测部分进行学习。
arXiv2107.11287: Adaptive event detection for Representative Load Signature Extraction, Lei Yan, Wei Tian, Jiayu Han, Zuyi Li
作者是来自于Illinois Institute of Technology 的华人教授李祖毅团队。
Ref: https://blog.csdn.net/chenxy_bwave/article/details/121307094
该论文:
1. 提到了event detection(事件检测)的难点:
这些在评估算法时,需要引以注意。
2. 认为高频数据采样率为大于1hz。事件检测(Event detection)是event-based non-intrusive load monitoring(NILM)的第一步。但现在很多研究由于缺乏高分辨率的数据集,而只能使用non-event-based NILM。
注:
【1】也有可能这篇论文中的这个观点是错误的,CO和FHMM并非event-based NILM算法,从一些其他论文和博文Ref来看,CO和FHMM很有可能是non-event-based NILM。
3. 采用自适应调整参数的方法,包括了窗口长度(这个比较厉害,看看后文到底是怎么做的)、margin width(什么鬼?window with adaptive margins ?)、threshold.
4. 基于这些数据做了性能评估:
20Hz dataset, the 50Hz LIFTED dataset, and the 60Hz BLUED dataset
[comment] 根据使用的数据来看,这篇论文属于event-based NILM,基于高频数据。
5. 通过事件检测,可以区分暂态(transient)和稳态(steady-state)数据,进而可以提高NILM的准确率(?)通过事件检测结果,根据不同事件,提取特征,进而识别电器。原文:(1) The extracted load signatures can improve NILM accuracy. (2) Each load signature can be modelled as a measurable parameter giving information on the operating cycles of individual appliances. (3) It further extracts representative load signatures based on event detection results for NILM.
6. 性能/亮点:
(1) can guarantee the accuracy and robustness of event detection even when using one arbitrary set of initial parameters. (很厉害啊)
(2) 可以检出整个事件,其中包括暂态和稳态序列,而不是仅仅只检测到变点,从而分别提取出暂态和稳态的特征。
(3) 同时使用提取出来的暂态和稳态特征,可以提高NILM的准确性和有效性。
1. 分析了已有的几种事件检测算法的缺陷。
(1)LLD-Max(log likelihood ratio detector with maxima): Due to the fixed size of windows, some false alarms might occur in the long transition if the window size is smaller than the duration of transition.
(2)MF(matched filter): the MF method may fail as high fluctuations may mask the events of small appliances.
2. 负载特征分析
(1)稳态特征,具有additivity。可以直接追加到用于识别的特征中去。
(2)有使用无功功率作为特征的算法;也有用VI轨迹作为特征的算法,并作为卷积神经网络的输入,更有进一步用于transfer learning的。
(3)稳态特征存在的一个问题是有些不同的电器可能拥有相近的稳态特征,而暂态特征就具有更强分辨能力(transients are more different and provide more deciding information than steady-state signatures)。暂态特征可以分为rectified form(R-form)和delta form(D-form)两大类,差异在于是否存在很大的过冲(whether the transient spike power goes far beyond the steady-state power).
该论文提出的算法称之为WAMMA,全称Window with Adaptive Margin, Multi-timescale window screening and Adaptive threshold.
该论文提出的整个算法的框架示意图,包含了WAMMA和负载特征:
左右两边margin的目的,是通过自适应调节窗口的位置,来确保将margin 窗口最终落在稳态数据上。判断方法如下:
If the negative change signs within a window account for more than 60%, the right margin will move rightward even though the change value is smaller than the threshold. Such movement will stop until the conditions for both change signs and change values are met.
[comment] 既然窗口位置根据检测情况可以自动调节——窗口右边界向右移动,直到认为进入稳态为止,那么在实现的时候如何改造?必须要给出一个最大窗口长度,不能无限增长。
注意:这里提到针对near-simultaneous events的情况,仅仅在事件检测阶段,是无法独立解决的,需要和后续的负载分解(参考各电器独自的负载特征)联合起来,才能解决。原文如下:The second one is concatenation of near-simultaneous events. If the first event is classified to some appliance in a low probability in the following appliance identification step, it is very likely that two events are from the same long transition. In this case, the concatenated event will be inferred again to find out which appliance is changing state. The second component works well in conjunction with load disaggregation in a later stage.
这里的Micro-timescale window用于协助解决near-simultaneous events,它工作于finer timescale,且工作于macro-timescale window完成之后。
在没有事件的时候,计算均值和方差。如果方差在一个较小范围内波动的话,则门限不需要更新,反之,则需要更新。进一步,门限的更新还需要考虑电器特征(可是非侵入式检测的输入数据是所有电器混合后的数据,如何做到门限按照各电器特性调整呢?)。
Transient signatures:
Steady-state signatures: