双约束重力模型python实现,以物流需求预测为例

采用弹性系数发求得未来年份的物流生产量和吸引量,采用双约束重力模型对OD矩阵进行预测,阻抗函数采用的两两小区之间的距离,最后将预测结果矩阵写入excel。

OD矩阵如图

双约束重力模型python实现,以物流需求预测为例_第1张图片

程序如下:

import copy
import numpy as np
import pandas as pd
import openpyxl as op

"""
#################双约束重力模型########################
    1.数据提取
    2.物流生成预测
    3.迭代求取ki,kj
    4.物流分布预测
    5.主函数
    6.保存od_pre为预测od矩阵,保存od_draw_data为绘图数据
"""

# 弹性系数数据,求得物流增长率alpha
elastic_coefficient = [[0.12, 0.69], [0.1, 1], [0.08, 0.88]]
alpha = []
for each in elastic_coefficient:
    alpha.append(each[0] * each[1])

# 提取od信息
od_data = pd.read_csv('L_OD_data.csv')
od_data = np.array(od_data)
od_data = od_data.tolist()

ai = od_data[-1]  # 当前吸引量
pi = []  # 当前发生量
for i in od_data:
    del i[0]
    pi.append(i[-1])
del ai[-1]
del pi[-1]

area_number = len(od_data[0]) - 1  # 小区数

# 提取距离数据
f_ij = pd.read_csv('city_distance.csv', header=None)
f_ij = np.array(f_ij)
f_ij = f_ij.tolist()


# 物流生成预测的函数
def cal_ai_pi(alpha, year):
    ai_pre = copy.deepcopy(ai)
    pi_pre = copy.deepcopy(pi)
    for i in alpha:
        for index, data in enumerate(ai_pre):
            ai_pre[index] = data * pow(1 + i, year)
    for j in alpha:
        for index, data in enumerate(pi_pre):
            pi_pre[index] = data * pow(1 + j, year)
    return ai_pre, pi_pre


# 迭代终止的判断函数
def judge(kj, kj_pre, ki, ki_pre):
    for i, j, ii, jj in zip(kj, kj_pre, ki, ki_pre):
        if i - j or ii - jj > 0.001:
            break
            return False
        else:
            return True


# 迭代ki,kj的函数
def cal_kij(ai, pi):
    # 迭代
    kj = [1 for i in range(area_number)]  # 初始化kj
    ki = [0 for i in range(area_number)]  # 初始化ki,方便第一次比较
    while True:
        # 储存上一次的计算结果
        kj_pre = kj
        ki_pre = ki
        # 迭代ki
        ki = []
        for i in range(area_number):
            sum_row = 0
            for j in range(area_number):
                sum_row += kj[j] * ai[j] / f_ij[i][j]
            ki.append(1 / sum_row)
        # 迭代kj
        kj = []
        for ii in range(area_number):
            sum_column = 0
            for jj in range(area_number):
                sum_column += ki[jj] * pi[jj] / f_ij[jj][ii]
            kj.append(1 / sum_column)
        # 终止条件的判断
        if judge(kj, kj_pre, ki, ki_pre):
            break
    return kj, ki


# 通过od_data提取发生量和吸引量矩阵
l_od_temp = od_data[:-1]
l_od = []
for i in l_od_temp:
    del i[0]
    del i[-1]
    l_od.append(i)


# print(l_od)


# 物流分布预测的函数
def cal_od_pre(kj, ki, ai, pi):
    lod_pre = []
    for i in range(area_number):
        row = []
        for j in range(area_number):
            l_ij = ki[i] * kj[j] * pi[i] * ai[j] / f_ij[i][j]
            row.append(l_ij)
        lod_pre.append(row)
    return lod_pre


def write_to_excel(fileName, lod, ai, pi):
    #print(lod)
    wb = op.Workbook()  # 创建工作簿对象
    ws = wb['Sheet']  # 创建子表
    # 数据整理
    titleString = [i + 1 for i in range(area_number)]
    # 首行
    titleString.insert(0, '小区'), titleString.append('实际求和值'), titleString.append('预测pi')
    ws.append(titleString)
    # 中间行,即od矩阵
    for index, data in enumerate(lod):
        #print(data)
        data.insert(0, index + 1), data.append(sum(data)), data.append(pi[index])
        ws.append(data)
    # 倒数第二行
    lost_row_2 = []
    for column in range(area_number):
        sum1 = 0
        for row in lod:
            sum1 += row[column + 1]
        lost_row_2.append(sum1)
    lost_row_2.insert(0, '实际求和值')
    ws.append(lost_row_2)
    # 最后一行
    lost_row_1 = ai
    lost_row_1.insert(0, '预测ai'),
    ws.append(lost_row_1)
    wb.save(fileName + '.xlsx')


def write_to_excel_to_draw(filName, lod):
    # 将数据写入excel
    wb = op.Workbook()  # 创建工作簿对象
    ws = wb['Sheet']  # 创建子表
    for i in lod:
        ws.append(i)
    wb.save(filName + '.xlsx')


# 主函数,一个完整的预测步骤的函数
def main(stage):
    # 物流生成预测
    ai_pre, pi_pre = cal_ai_pi(alpha[0:stage + 1], 5)
    # 计算kj,ki
    kj, ki = cal_kij(ai_pre, pi_pre)
    # 物流分布预测
    lod_pre = cal_od_pre(kj, ki, ai_pre, pi_pre)
    #print(lod_pre)
    # 写入excel
    fileName2 = 'od_draw_data' + str(stage + 1)
    write_to_excel_to_draw(fileName2,lod_pre)
    fileName1 = 'od_pre_' + str(stage + 1)
    write_to_excel(fileName1, lod_pre, ai_pre, pi_pre)



# 计算第一个五年
main(0)
# 计算第二个五年
main(1)
# 计算第三个五年
main(2)

预测结果如下:

双约束重力模型python实现,以物流需求预测为例_第2张图片

还可以通过matplotlib库和geopandas库绘制期望线图

双约束重力模型python实现,以物流需求预测为例_第3张图片

 

你可能感兴趣的:(python,矩阵,python)