嘿,记得给“机器学习与推荐算法”添加星标
国际顶级学术会议WWW2021定在2021年4月12-23日举行。受新冠肺炎疫情影响,大会将在线上举行。
今天为大家收集了一些作者提前发布到Arxiv上的推荐系统相关的文章,以此来提前领略大家的最新前沿的想法。其中主要涉及推荐中的冷启动问题、基于GNN的推荐、社会化推荐、可解释性推荐、基于位置的推荐、基于评论的推荐、序列化推荐以及基于知识图谱的推荐系统等。
由于检索能力有限,主要收集了12篇推荐系统论文,下面将标题以及摘要奉上,需要的同学自取。另外,文末提供下载方式,可打包下载论文集。
Task-adaptive Neural Process for User Cold-Start Recommendation
User cold-start recommendation is a long-standing challenge for recommender systems due to the fact that only a few interactions of cold-start users can be exploited. Recent studies seek to address this challenge from the perspective of meta learning, and most of them follow a manner of parameter initialization, where the model parameters can be learned by a few steps of gradient updates. While these gradient-based meta-learning models achieve promising performances to some extent, a fundamental problem of them is how to adapt the global knowledge learned from previous tasks for the recommendations of cold-start users more effectively. In this paper, we develop a novel meta-learning recommender called task-adaptive neural process (TaNP). TaNP is a new member of the neural process family, where making recommendations for each user is associated with a corresponding stochastic process. TaNP directly maps the observed interactions of each user to a predictive distribution, sidestepping some training issues in gradient-based meta-learning models. More importantly, to balance the trade-off between model capacity and adaptation reliability, we introduce a novel task-adaptive mechanism. It enables our model to learn the relevance of different tasks and customize the global knowledge to the task-related decoder parameters for estimating user preferences. We validate TaNP on multiple benchmark datasets in different experimental settings. Empirical results demonstrate that TaNP yields consistent improvements over several state-of-the-art meta-learning recommenders.
Interest-aware Message-Passing GCN for Recommendation
Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is attributed to their capability on learning good user and item embeddings by exploiting the collaborative signals from the high-order neighbors. Like other GCN models, the GCN based recommendation models also suffer from the notorious over-smoothing problem - when stacking more layers, node embeddings become more similar and eventually indistinguishable, resulted in performance degradation. The recently proposed LightGCN and LR-GCN alleviate this problem to some extent, however, we argue that they overlook an important factor for the over-smoothing problem in recommendation, that is, high-order neighboring users with no common interests of a user can be also involved in the user's embedding learning in the graph convolution operation. As a result, the multi-layer graph convolution will make users with dissimilar interests have similar embeddings. In this paper, we propose a novel Interest-aware Message-Passing GCN (IMP-GCN) recommendation model, which performs high-order graph convolution inside subgraphs. The subgraph consists of users with similar interests and their interacted items. To form the subgraphs, we design an unsupervised subgraph generation module, which can effectively identify users with common interests by exploiting both user feature and graph structure. To this end, our model can avoid propagating negative information from high-order neighbors into embedding learning. Experimental results on three large-scale benchmark datasets show that our model can gain performance improvement by stacking more layers and outperform the state-of-the-art GCN-based recommendation models significantly.
Random Walks with Erasure: Diversifying Personalized Recommendations on Social and Information Networks
Most existing personalization systems promote items that match a user's previous choices or those that are popular among similar users. This results in recommendations that are highly similar to the ones users are already exposed to, resulting in their isolation inside familiar but insulated information silos. In this context, we develop a novel recommendation framework with a goal of improving information diversity using a modified random walk exploration of the user-item graph. We focus on the problem of political content recommendation, while addressing a general problem applicable to personalization tasks in other social and information networks. For recommending political content on social networks, we first propose a new model to estimate the ideological positions for both users and the content they share, which is able to recover ideological positions with high accuracy. Based on these estimated positions, we generate diversified personalized recommendations using our new random-walk based recommendation algorithm. With experimental evaluations on large datasets of Twitter discussions, we show that our method based on random walks with erasure is able to generate more ideologically diverse recommendations. Our approach does not depend on the availability of labels regarding the bias of users or content producers. With experiments on open benchmark datasets from other social and information networks, we also demonstrate the effectiveness of our method in recommending diverse long-tail items.
ELIXIR: Learning from User Feedback on Explanations to Improve Recommender Models
System-provided explanations for recommendations are an important component towards transparent and trustworthy AI. In state-of-the-art research, this is a one-way signal, though, to improve user acceptance. In this paper, we turn the role of explanations around and investigate how they can contribute to enhancing the quality of generated recommendations themselves. We devise a human-in-the-loop framework, called ELIXIR, where user feedback on explanations is leveraged for pairwise learning of user preferences. ELIXIR leverages feedback on pairs of recommendations and explanations to learn user-specific latent preference vectors, overcoming sparseness by label propagation with item-similarity-based neighborhoods. Our framework is instantiated using generalized graph recommendation via Random Walk with Restart. Insightful experiments with a real user study show significant improvements in movie and book recommendations over item-level feedback.
Learning Fair Representations for Bipartite Graph based Recommendation
As a key application of artificial intelligence, recommender systems are among the most pervasive computer aided systems to help users find potential items of interests. Recently, researchers paid considerable attention to fairness issues for artificial intelligence applications. Most of these approaches assumed independence of instances, and designed sophisticated models to eliminate the sensitive information to facilitate fairness. However, recommender systems differ greatly from these approaches as users and items naturally form a user-item bipartite graph, and are collaboratively correlated in the graph structure. In this paper, we propose a novel graph based technique for ensuring fairness of any recommendation models. Here, the fairness requirements refer to not exposing sensitive feature set in the user modeling process. Specifically, given the original embeddings from any recommendation models, we learn a composition of filters that transform each user's and each item's original embeddings into a filtered embedding space based on the sensitive feature set. For each user, this transformation is achieved under the adversarial learning of a user-centric graph, in order to obfuscate each sensitive feature between both the filtered user embedding and the sub graph structures of this user. Finally, extensive experimental results clearly show the effectiveness of our proposed model for fair recommendation. We publish the source code at https://github.com/newlei/FairGo.
STAN: Spatio-Temporal Attention Network for Next Location Recommendation
The next location recommendation is at the core of various location-based applications. Current state-of-the-art models have attempted to solve spatial sparsity with hierarchical gridding and model temporal relation with explicit time intervals, while some vital questions remain unsolved. Non-adjacent locations and non-consecutive visits provide non-trivial correlations for understanding a user's behavior but were rarely considered. To aggregate all relevant visits from user trajectory and recall the most plausible candidates from weighted representations, here we propose a Spatio-Temporal Attention Network (STAN) for location recommendation. STAN explicitly exploits relative spatiotemporal information of all the check-ins with self-attention layers along the trajectory. This improvement allows a point-to-point interaction between non-adjacent locations and non-consecutive check-ins with explicit spatiotemporal effect. STAN uses a bi-layer attention architecture that firstly aggregates spatiotemporal correlation within user trajectory and then recalls the target with consideration of personalized item frequency (PIF). By visualization, we show that STAN is in line with the above intuition. Experimental results unequivocally show that our model outperforms the existing state-of-the-art methods by 9-17%.
Leveraging Review Properties for Effective Recommendation
Many state-of-the-art recommendation systems leverage explicit item reviews posted by users by considering their usefulness in representing the users' preferences and describing the items' attributes. These posted reviews may have various associated properties, such as their length, their age since they were posted, or their item rating. However, it remains unclear how these different review properties contribute to the usefulness of their corresponding reviews in addressing the recommendation task. In particular, users show distinct preferences when considering different aspects of the reviews (i.e. properties) for making decisions about the items. Hence, it is important to model the relationship between the reviews' properties and the usefulness of reviews while learning the users' preferences and the items' attributes. Therefore, we propose to model the reviews with their associated available properties. We introduce a novel review properties-based recommendation model (RPRM) that learns which review properties are more important than others in capturing the usefulness of reviews, thereby enhancing the recommendation results. Furthermore, inspired by the users' information adoption framework, we integrate two loss functions and a negative sampling strategy into our proposed RPRM model, to ensure that the properties of reviews are correlated with the users' preferences. We examine the effectiveness of RPRM using the well-known Yelp and Amazon datasets. Our results show that RPRM significantly outperforms a classical and five state-of-the-art baselines. Moreover, we experimentally show the advantages of using our proposed loss functions and negative sampling strategy, which further enhance the recommendation performances of RPRM.
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation
Sequential recommendation (SR) is to accurately recommend a list of items for a user based on her current accessed ones. While new-coming users continuously arrive in the real world, one crucial task is to have inductive SR that can produce embeddings of users and items without re-training. Given user-item interactions can be extremely sparse, another critical task is to have transferable SR that can transfer the knowledge derived from one domain with rich data to another domain. In this work, we aim to present the holistic SR that simultaneously accommodates conventional, inductive, and transferable settings. We propose a novel deep learning-based model, Relational Temporal Attentive Graph Neural Networks (RetaGNN), for holistic SR. The main idea of RetaGNN is three-fold. First, to have inductive and transferable capabilities, we train a relational attentive GNN on the local subgraph extracted from a user-item pair, in which the learnable weight matrices are on various relations among users, items, and attributes, rather than nodes or edges. Second, long-term and short-term temporal patterns of user preferences are encoded by a proposed sequential self-attention mechanism. Third, a relation-aware regularization term is devised for better training of RetaGNN. Experiments conducted on MovieLens, Instagram, and Book-Crossing datasets exhibit that RetaGNN can outperform state-of-the-art methods under conventional, inductive, and transferable settings. The derived attention weights also bring model explainability.
Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation
Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via https://github.com/Coder-Yu/RecQ.
A Model of Two Tales: Dual Transfer Learning Framework for Improved Long-tail Item Recommendation
Highly skewed long-tail item distribution is very common in recommendation systems. It significantly hurts model performance on tail items. To improve tail-item recommendation, we conduct research to transfer knowledge from head items to tail items, leveraging the rich user feedback in head items and the semantic connections between head and tail items. Specifically, we propose a novel dual transfer learning framework that jointly learns the knowledge transfer from both model-level and item-level: 1. The model-level knowledge transfer builds a generic meta-mapping of model parameters from few-shot to many-shot model. It captures the implicit data augmentation on the model-level to improve the representation learning of tail items. 2. The item-level transfer connects head and tail items through item-level features, to ensure a smooth transfer of meta-mapping from head items to tail items. The two types of transfers are incorporated to ensure the learned knowledge from head items can be well applied for tail item representation learning in the long-tail distribution settings. Through extensive experiments on two benchmark datasets, results show that our proposed dual transfer learning framework significantly outperforms other state-of-the-art methods for tail item recommendation in hit ratio and NDCG. It is also very encouraging that our framework further improves head items and overall performance on top of the gains on tail items.
Disentangling User Interest and Conformity for Recommendation with Causal Embedding
Recommendation models are usually trained on observational interaction data. However, observational interaction data could result from users' conformity towards popular items, which entangles users' real interest. Existing methods tracks this problem as eliminating popularity bias, e.g., by re-weighting training samples or leveraging a small fraction of unbiased data. However, the variety of user conformity is ignored by these approaches, and different causes of an interaction are bundled together as unified representations, hence robustness and interpretability are not guaranteed when underlying causes are changing. In this paper, we present DICE, a general framework that learns representations where interest and conformity are structurally disentangled, and various backbone recommendation models could be smoothly integrated. We assign users and items with separate embeddings for interest and conformity, and make each embedding capture only one cause by training with cause-specific data which is obtained according to the colliding effect of causal inference. Our proposed methodology outperforms state-of-the-art baselines with remarkable improvements on two real-world datasets on top of various backbone models. We further demonstrate that the learned embeddings successfully capture the desired causes, and show that DICE guarantees the robustness and interpretability of recommendation.
Learning Intents behind Interactions with Knowledge Graph for Recommendation
Knowledge graph (KG) plays an increasingly important role in recommender systems. A recent technical trend is to develop end-to-end models founded on graph neural networks (GNNs). However, existing GNN-based models are coarse-grained in relational modeling, failing to (1) identify user-item relation at a fine-grained level of intents, and (2) exploit relation dependencies to preserve the semantics of long-range connectivity. In this study, we explore intents behind a user-item interaction by using auxiliary item knowledge, and propose a new model, Knowledge Graph-based Intent Network (KGIN). Technically, we model each intent as an attentive combination of KG relations, encouraging the independence of different intents for better model capability and interpretability. Furthermore, we devise a new information aggregation scheme for GNN, which recursively integrates the relation sequences of long-range connectivity (i.e., relational paths). This scheme allows us to distill useful information about user intents and encode them into the representations of users and items. Experimental results on three benchmark datasets show that, KGIN achieves significant improvements over the state-of-the-art methods like KGAT, KGNN-LS, and CKAN. Further analyses show that KGIN offers interpretable explanations for predictions by identifying influential intents and relational paths. The implementations are available at
https://github.com/huangtinglin/Knowledge_Graph_based_Intent_Network.
FM2: Field-matrixed Factorization Machines for Recommender Systems
Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or FM2). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.
打包论文下载请前往RSPapers,记得给个Star呀:
https://github.com/hongleizhang/RSPapers/tree/master/00-Latest_Papers/WWW2021
WWW2020推荐系统论文合集(已分类整理)
推荐系统中的对抗机器学习技术总结
WSDM2021推荐系统论文集锦(附下载)
喜欢的话点个在看吧????