- Pyecharts数据可视化大屏:打造沉浸式数据分析体验
我的运维人生
信息可视化数据分析数据挖掘运维开发技术共享
Pyecharts数据可视化大屏:打造沉浸式数据分析体验在当今这个数据驱动的时代,如何将海量数据以直观、生动的方式展现出来,成为了数据分析师和企业决策者关注的焦点。Pyecharts,作为一款基于Python的开源数据可视化库,凭借其丰富的图表类型、灵活的配置选项以及高度的定制化能力,成为了构建数据可视化大屏的理想选择。本文将深入探讨如何利用Pyecharts打造数据可视化大屏,并通过实际代码案例
- Faiss Tips:高效向量搜索与聚类的利器
焦习娜Samantha
FaissTips:高效向量搜索与聚类的利器faiss_tipsSomeusefultipsforfaiss项目地址:https://gitcode.com/gh_mirrors/fa/faiss_tips项目介绍Faiss是由FacebookAIResearch开发的一个用于高效相似性搜索和密集向量聚类的库。它支持多种硬件平台,包括CPU和GPU,能够在海量数据集上实现快速的近似最近邻搜索(AN
- Hadoop
傲雪凌霜,松柏长青
后端大数据hadoop大数据分布式
ApacheHadoop是一个开源的分布式计算框架,主要用于处理海量数据集。它具有高度的可扩展性、容错性和高效的分布式存储与计算能力。Hadoop核心由四个主要模块组成,分别是HDFS(分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理)和HadoopCommon(公共工具和库)。1.HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生
- hbase介绍
CrazyL-
云计算+大数据hbase
hbase是一个分布式的、多版本的、面向列的开源数据库hbase利用hadoophdfs作为其文件存储系统,提供高可靠性、高性能、列存储、可伸缩、实时读写、适用于非结构化数据存储的数据库系统hbase利用hadoopmapreduce来处理hbase、中的海量数据hbase利用zookeeper作为分布式系统服务特点:数据量大:一个表可以有上亿行,上百万列(列多时,插入变慢)面向列:面向列(族)的
- Flume:大规模日志收集与数据传输的利器
傲雪凌霜,松柏长青
后端大数据flume大数据
Flume:大规模日志收集与数据传输的利器在大数据时代,随着各类应用的不断增长,产生了海量的日志和数据。这些数据不仅对业务的健康监控至关重要,还可以通过深入分析,帮助企业做出更好的决策。那么,如何高效地收集、传输和存储这些海量数据,成为了一项重要的挑战。今天我们将深入探讨ApacheFlume,它是如何帮助我们应对这些挑战的。一、Flume概述ApacheFlume是一个分布式、可靠、可扩展的日志
- 高职人工智能训练师边缘计算实训室解决方案
武汉唯众智创
人工智能训练师边缘计算实训室人工智能训练师实训室边缘计算实训室
一、引言随着物联网(IoT)、大数据、人工智能(AI)等技术的飞速发展,计算需求日益复杂和多样化。传统的云计算模式虽在一定程度上满足了这些需求,但在处理海量数据、保障实时性与安全性、提升计算效率等方面仍面临诸多挑战。在此背景下,边缘计算作为一种新兴的计算模式应运而生,通过将计算能力推向数据生成或用户所在的网络边缘,显著降低了数据传输的延迟,提升了处理效率,并增强了数据安全性。针对高等职业院校的人工
- Spark集群的三种模式
MelodyYN
#Sparksparkhadoopbigdata
文章目录1、Spark的由来1.1Hadoop的发展1.2MapReduce与Spark对比2、Spark内置模块3、Spark运行模式3.1Standalone模式部署配置历史服务器配置高可用运行模式3.2Yarn模式安装部署配置历史服务器运行模式4、WordCount案例1、Spark的由来定义:Hadoop主要解决,海量数据的存储和海量数据的分析计算。Spark是一种基于内存的快速、通用、可
- HBase(一)——HBase介绍
weixin_30595035
大数据数据库数据结构与算法
HBase介绍1、关系型数据库与非关系型数据库(1)关系型数据库关系型数据库最典型的数据机构是表,由二维表及其之间的联系所组成的一个数据组织优点:1、易于维护:都是使用表结构,格式一致2、使用方便:SQL语言通用,可用于复杂查询3、复杂操作:支持SQL,可用于一个表以及多个表之间非常复杂的查询缺点:1、读写性能比较差,尤其是海量数据的高效率读写2、固定的表结构,灵活度稍欠3、高并发读写需求,传统关
- HBase介绍
mingyu1016
数据库
概述HBase是一个分布式的、面向列的开源数据库,源于google的一篇论文《bigtable:一个结构化数据的分布式存储系统》。HBase是GoogleBigtable的开源实现,它利用HadoopHDFS作为其文件存储系统,利用HadoopMapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服务。HBase的表结构HBase以表的形式存储数据。表有行和列组成。列划分为
- Java中的大数据处理框架对比分析
省赚客app开发者
java开发语言
Java中的大数据处理框架对比分析大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将深入探讨Java中常用的大数据处理框架,并对它们进行对比分析。大数据处理框架是现代数据驱动应用的核心,它们帮助企业处理和分析海量数据,以提取有价值的信息。本文将重点介绍ApacheHadoop、ApacheSpark、ApacheFlink和ApacheStorm这四种流行的
- 海量数据查找最大K个值:数据结构与算法的选择
星辰@Sea
数据结构Java数据结构
在处理大数据集时,经常需要找到数据集中最大的K个元素,这样的需求在很多领域都有广泛应用,例如推荐系统中寻找评分最高的K个商品、数据分析中找出最重要的K个特征、搜索引擎中找到排名前K的结果等等。面对海量数据,传统的排序方法可能不再适用,因为它们通常具有较高的时间复杂度。因此,选择合适的数据结构和算法对于提高效率至关重要。本文将详细介绍如何在海量数据集中查找最大的K个值,探讨不同的数据结构与算法选择,
- 【架构师之路】四、系统架构
蜗牛互联网
架构Java数据库运维
高并发,大流量Google日均PV数35亿,日均IP访问数3亿微信在线用户数10亿天猫双十一活动一天交易额3000亿高可用系统7*24小时不间断服务。大型互联网站的宕机事件通常会成为新闻焦点。海量数据需要存储、管理海量数据。Facebook每周上传的照片数目接近10亿百度收录的网页数目有数百亿Google有近百万台服务器为全球用户提供服务用户分布广泛,网络情况复杂中美光缆的数次故障,也让一些对国外
- 淘宝海量数据库OceanBase:系统架构详解
weixin_34356555
数据库系统架构大数据
无论从数据量还是访问量,OceanBase不再能够是一个单机系统,即使一台单机能服务高达几个TB的数据、提供几万QPS的服务能力,因此,分布式系统不可避免,然而,内部如何实现拆表(拆库)以及如何实现数据库的事务,成为了一个很大的挑战和十分艰难的抉择:相关文章:淘宝海量数据库之一:来自业务的挑战淘宝海量数据库之二:一致性选择淘宝海量数据库之三:事务的ACID一种选择是当前数据库的常用的水平拆库,淘宝
- 大家对人工智能的发展怎么看?
川哥说运营
人工智能
对人工智能产品发展的几点认识说起人工智能的时候,大家都在说是机器具有了人的思维,可以进行情感表达,决策判断。并且通过越多的数据和越长的训练,智能性会越来越高。那么这种智能怎么来评价其可用性,包括怎么训练,怎么集成,怎么选择呢?人工智能的基础在这个点上,我们谈一下要做到人工智能需要的几个必备条件。海量数据“海量”数据究竟是多少,其实对于不同的学习目标标准是不一样的。训练一个具有智能和学习能力的算法,
- 数据治理:企业如何精准管理与高效利用数据?
ShiTuanWang
数据挖掘大数据数据分析网络
当今这个信息爆炸的时代,数据已成为企业最宝贵的资产之一。随着大数据、云计算、人工智能等技术的飞速发展,如何有效管理和利用数据,以驱动业务增长、优化决策过程、提升用户体验,成为了每一家企业都需直面的重大挑战。在数字化转型的浪潮中,数据不再是冷冰冰的数字堆砌,而是转化为洞察市场、预测趋势、指导决策的重要力量。然而,海量数据的快速增长也带来了存储、处理、分析及安全等方面的多重挑战。企业若想在竞争激烈的市
- StarRocks on AWS Graviton3,实现 50% 以上性价比提升
StarRocks_labs
大数据数据库数据仓库湖仓一体云计算
在数据时代,企业拥有前所未有的大量数据资产,但如何从海量数据中发掘价值成为挑战。数据分析凭借强大的分析能力,可从不同维度挖掘数据中蕴含的见解和规律,为企业战略决策提供依据。数据分析在营销、风险管控、产品优化等领域发挥着关键作用,帮助企业提高运营效率、优化业务流程、发现新商机、增强竞争力。低成本高效率的完成对海量数据的分析,及时准确的释放数据价值,已成为企业赢得竞争优势的利器。StarRockson
- HBase
傲雪凌霜,松柏长青
大数据后端hbase数据库大数据
ApacheHBase是一个基于Hadoop分布式文件系统(HDFS)构建的分布式、面向列的NoSQL数据库,主要用于处理大规模、稀疏的表结构数据。HBase的设计灵感来自Google的Bigtable,能够在海量数据中提供快速的随机读写操作,适合需要低延迟和高吞吐量的应用场景。HBase核心概念表(Table):HBase的数据存储在表中,与传统的关系型数据库不同,HBase的表是面向列族(Co
- Hive的优势与使用场景
傲雪凌霜,松柏长青
后端大数据hivehadoop数据仓库
Hive的优势Hive作为一个构建在Hadoop上的数据仓库工具,具有许多优势,特别是在处理大规模数据分析任务时。以下是Hive的主要优势:1.与Hadoop生态系统的紧密集成Hive构建在Hadoop分布式文件系统(HDFS)之上,能够处理海量数据并进行分布式计算。它利用Hadoop的MapReduce或Spark来执行查询,具备高度扩展性,适合大数据处理。2.支持SQL-like查询语言(Hi
- 大数据技术之Hadoop(一)
pauls
Hadoop概述1.1Hadoop是什么Hadoop是什么1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。2)主要解决,海量数据的存储和海量数据的分析计算问题。3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。Hadoop生态1.2Hadoop发展历史(了解)Hadoop发展历史1)Hadoop创始人DougCutting,为了实现与Google类似
- ES elasticsearch集群入门
小P聊技术
1介绍使用单机的版的elasticsearch可以完成检索,但是如果要实现高可用的话,就需要搭建集群。集群不仅可以实现高可用,也能实现海量数据存储的横向扩展。2核心原理每个索引会被分成多个分片shards进行存储,默认创建索引是分配5个分片进行存储。每个分片都会分布式部署在多个不同的节点上进行部署,该分片成为primaryshards。注意:索引的主分片primaryshards定义好后,后面不能
- 使用AI大模型进行企业数据分析与决策支持
MarkHD
人工智能数据分析数据挖掘
使用AI大模型进行企业数据分析与决策支持已成为现代企业管理的重要趋势。AI大模型凭借其强大的数据处理能力和智能分析功能,能够为企业提供精准、高效的数据分析服务,进而支持企业的决策过程。以下是使用AI大模型进行企业数据分析与决策支持的具体方式和优势:一、AI大模型在数据分析中的应用超级数据处理能力海量数据处理:AI大模型能够同时处理海量数据,包括结构化数据、非结构化数据等,满足企业大规模数据分析的需
- CPU服务器如何应对大规模并行计算需求?
Jtti
服务器运维
大规模并行计算是指利用多个处理单元同时处理计算任务,以提高计算效率和缩短完成时间。这种计算方式常用于科学计算、数据分析、机器学习、图像处理等领域,面对海量数据与复杂计算时,传统的串行计算往往显得无能为力。现代CPU通常具备多个核心,这使得它们能够在同一时间内并行执行多个线程或任务。多核处理器可以大幅提升并行计算能力,适合处理大型计算任务。CPU服务器通常配备多级高速缓存(L1、L2、L3),有效减
- 图像去噪算法代码c语言,深度学习图像去噪代码
weixin_39777018
图像去噪算法代码c语言
AI开发平台ModelArtsModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。按需/包周期付费可选,最低0.00元/小时导入操作||https://support.huaweicloud.com/engineers-
- 【Spark高级应用】使用Spark进行高级数据处理与分析
爱技术的小伙子
大数据sparkajax大数据
Spark高级应用使用Spark进行高级数据处理与分析引言在大数据时代,快速处理和分析海量数据是每个企业面临的重大挑战。ApacheSpark作为一种高效的分布式计算框架,凭借其高速、易用、通用和灵活的特点,已经成为大数据处理和分析的首选工具。本文将深入探讨如何使用Spark进行高级数据处理与分析,通过实际案例和代码示例,帮助你掌握Spark的高级应用技巧。提出问题如何进行高效的大规模数据处理?如
- 大数据(Big Data):探索信息时代的海量数据世界
hong161688
大数据
大数据(BigData):探索信息时代的海量数据世界一、大数据的定义与特点大数据(BigData),或称巨量资料,是指那些在传统数据处理应用软件无法有效捕捉、管理和处理的数据集合。这些数据集通常具有海量、高增长率和多样化的特点,需要新的处理模式才能赋予其更强的决策力、洞察发现力和流程优化能力。大数据的“大”不仅体现在数据量的规模上,更在于其处理难度和复杂性,以及对信息提取和价值挖掘的需求。大数据的
- 国产海量数据库安装部署文档
人生不过大梦一场
db数据库windowslinux
本系统为麒麟V10系统,安装用户为普通用户给予sudo权限,主机内存16G(8G安装没装起来)#默认端口5432对外端口数据库对外提供访问5433对内端口Basebackup与复制流协议系统环境设置#关闭防火墙(二者执行一个)sudosystemctlstopfirewalld.service&&sudosystemctldisablefirewalld&&sudosystemctlstatusf
- 布隆过滤器
guangzhi0633
面试职场和发展
揭秘数据筛选的神秘利器在浩瀚的数据海洋中,如何快速、准确地找到我们需要的信息?这不仅是数据科学家的难题,也是每一个与数据打交道的人面临的挑战。今天,让我们一起走进布隆过滤器(BloomFilter)的世界,看看这个被誉为“筛选神器”的技术如何帮助我们在海量数据中淘金。布隆过滤器的奥秘想象一下,你手中有一个巨大的筛子,它不仅能过滤掉无用的沙子,还能智能地保留下珍贵的金粒。布隆过滤器就是这样的“智慧筛
- Redis概述
AC编程
一、为什么需要NoSQLHighperformance高并发读写HugeStorage海量数据的高效率存储和访问HighScalability&&HighAvailability高可拓展性和高可用性二、NoSQL数据库的四大分类键值(Key-Value)存储列存储文档数据库图形数据库三、四类NoSQL数据库比较键值(Key-Value)存储相关产品:Redis、Voldemort、TokyoCab
- 人工智能训练师边缘计算实训室解决方案
武汉唯众智创
人工智能训练师边缘计算实训室人工智能训练师边缘计算实训室
一、引言随着物联网(IoT)、大数据、人工智能(AI)等技术的飞速发展,计算需求日益复杂和多样化。传统的云计算模式虽在一定程度上满足了这些需求,但在处理海量数据、保障实时性与安全性、提升计算效率等方面仍面临诸多挑战。边缘计算作为一种新兴的计算模式应运而生,通过将计算能力推向数据生成或用户所在的网络边缘,显著降低了数据传输的延迟,提升了处理效率,并增强了数据安全性。在此背景下,唯众提出了《人工智能训
- 守护云安全:数据保护与合规的最佳实践
网安加社区
安全网络云安全云原生数据安全
随着云技术的蓬勃发展,企业对云服务日益依赖,保障用于存储与管理海量数据的云端平台的安全性也变得极其重要。如何保障云安全的背后也隐藏着一个不容忽视的要点:数据安全责任需由云服务提供商与客户共同承担。这种责任共担模型规定,云服务提供商负责保护其服务基础设施的安全,企业负责保护其在云环境中的数据和应用程序的安全。但当涉及基础设施即服务(IaaS)与平台即服务(PaaS)等多种服务模式时,执行这种责任共担
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =