(1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)
点对点模型通常是一个基于拉取或者轮询的消息传送模型,这种模型从队列中请求信息,而不是将消息推送到客户端。这个模型的特点是发送到队列的消息被一个且只有一个接收者接收处理,即使有多个消息监听者也是如此。
(2)发布/订阅模式(一对多,数据生产后,推送给所有订阅者)
发布订阅模型则是一个基于推送的消息传送模型。发布订阅模型可以有多种不同的订阅者,临时订阅者只在主动监听主题时才接收消息,而持久订阅者则监听主题的所有消息,即使当前订阅者不可用,处于离线状态。
允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的"插入-获取-删除"范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。
因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。
在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。
在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。(Kafka保证一个Partition内的消息的有序性)
有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。
很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。
在流式计算中,Kafka一般用来缓存数据,Storm通过消费Kafka的数据进行计算。
hadoop102 | hadoop102 | hadoop102 |
---|---|---|
zk | zk | zk |
kafka | kafka | kafka |
mkdir logs
cd config/
vim server.properties
#broker的全局唯一编号,不能重复
broker.id=0
#删除topic功能使能
delete.topic.enable=true
#处理网络请求的线程数量
num.network.threads=3
#用来处理磁盘IO的现成数量
num.io.threads=8
#发送套接字的缓冲区大小
socket.send.buffer.bytes=102400
#接收套接字的缓冲区大小
socket.receive.buffer.bytes=102400
#请求套接字的缓冲区大小
socket.request.max.bytes=104857600
#kafka运行日志存放的路径
log.dirs=/opt/module/kafka/logs
#topic在当前broker上的分区个数
num.partitions=1
#用来恢复和清理data下数据的线程数量
num.recovery.threads.per.data.dir=1
#segment文件保留的最长时间,超时将被删除
log.retention.hours=168
#配置连接Zookeeper集群地址
zookeeper.connect=hadoop102:2181,hadoop103:2181,hadoop104:2181
vim /etc/profile.d/my_env.sh
#KAFKA_HOME
export KAFKA_HOME=/opt/module/kafka
export PATH=$PATH:$KAFKA_HOME/bin
# 使其生效
source /etc/profile.d/my_env.sh
xsync /opt/module/kafka/
注意:分发之后记得配置其他机器的环境变量
分别在hadoop103和hadoop104上修改配置文件/opt/module/kafka/config/server.properties中的broker.id=1、broker.id=2
注意:broker.id不得重复
[root@hadoop102 kafka]$ bin/kafka-server-start.sh config/server.properties &
[root@hadoop103 kafka]$ bin/kafka-server-start.sh config/server.properties &
[root@hadoop104 kafka]$ bin/kafka-server-start.sh config/server.properties &
[root@hadoop102 kafka]$ bin/kafka-server-stop.sh stop
[root@hadoop103 kafka]$ bin/kafka-server-stop.sh stop
[root@hadoop104 kafka]$ bin/kafka-server-stop.sh stop
注意: :我这里配置的kafka是注册在zookeeper的kafka节点上的,在文件zookeeper.properties:
bin/kafka-topics.sh --zookeeper hadoop102:2181/kafka --list
bin/kafka-topics.sh --zookeeper hadoop102:2181/kafka \
--create --replication-factor 3 --partitions 1 --topic first
选项说明:
bin/kafka-topics.sh --zookeeper hadoop102:2181/kafka \
--delete --topic first
bin/kafka-console-producer.sh \
--broker-list hadoop102:9092 --topic first
bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --from-beginning --topic first
–from-beginning:会把first主题中以往所有的数据都读取出来。根据业务场景选择是否增加该配置。
bin/kafka-topics.sh --zookeeper hadoop102:2181/kafka \
--describe --topic first
producer采用推(push)模式将消息发布到broker,每条消息都被追加(append)到分区(patition)中,属于顺序写磁盘(顺序写磁盘效率比随机写内存要高,保障kafka吞吐率)。
消息发送时都被发送到一个topic,其本质就是一个目录,而topic是由一些Partition Logs(分区日志)组成,其组织结构如下图所示:
我们可以看到,每个Partition中的消息都是有序的,生产的消息被不断追加到Partition log上,其中的每一个消息都被赋予了一个唯一的offset值。
同一个partition可能会有多个replication(对应 server.properties 配置中的 default.replication.factor=N)。没有replication的情况下,一旦broker 宕机,其上所有 patition 的数据都不可被消费,同时producer也不能再将数据存于其上的patition。引入replication之后,同一个partition可能会有多个replication,而这时需要在这些replication之间选出一个leader,producer和consumer只与这个leader交互,其它replication作为follower从leader 中复制数据。
物理上把topic分成一个或多个patition(对应 server.properties 中的num.partitions=3配置),每个patition物理上对应一个文件夹(该文件夹存储该patition的所有消息和索引文件),如下:
无论消息是否被消费,kafka都会保留所有消息。有两种策略可以删除旧数据:
kafka提供了两套consumer API:高级Consumer API和低级Consumer API。
消费者是以consumer group消费者组的方式工作,由一个或者多个消费者组成一个组,共同消费一个topic。每个分区在同一时间只能由group中的一个消费者读取,但是多个group可以同时消费这个partition。在图中,有一个由三个消费者组成的group,有一个消费者读取主题中的两个分区,另外两个分别读取一个分区。某个消费者读取某个分区,也可以叫做某个
消费者是某个分区的拥有者。
在这种情况下,消费者可以通过水平扩展的方式同时读取大量的消息。另外,如果一个消费者失败了,那么其他的group成员会自动负载均衡读取之前失败的消费者读取的分区。
(1)在hadoop102、hadoop103上修改/opt/module/kafka/config/consumer.properties配置文件中的group.id属性为任意组名。
[root@hadoop103 config]$ vim consumer.properties
group.id=atguigu
(2)在hadoop102、hadoop103上分别启动消费者
[root@hadoop102 kafka]$ bin/kafka-console-consumer.sh \
--zookeeper hadoop102:2181 --topic first --consumer.config config/consumer.properties
[root@hadoop103 kafka]$ bin/kafka-console-consumer.sh --zookeeper hadoop102:2181 --topic first --consumer.config config/consumer.properties
(3)在hadoop104上启动生产者
[atguigu@hadoop104 kafka]$ bin/kafka-console-producer.sh \
--broker-list hadoop102:9092 --topic first
>hello world
(4)查看hadoop102和hadoop103的接收者。
同一时刻只有一个消费者接收到消息。
bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --from-beginning --topic first
<dependencies>
<dependency>
<groupId>org.apache.kafkagroupId>
<artifactId>kafka-clientsartifactId>
<version>0.11.0.0version>
dependency>
<dependency>
<groupId>org.apache.kafkagroupId>
<artifactId>kafka_2.12artifactId>
<version>0.11.0.0version>
dependency>
dependencies>
package www.wcx;
import java.util.Properties;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
/**
* 项目: kafka
*
* 功能描述: 新的生产者api
*
* @author: WuChengXing
* @create: 2020-12-29 17:23
**/
public class NewProducer {
public static void main(String[] args) {
Properties props = new Properties();
// Kafka服务端的主机名和端口号
props.put("bootstrap.servers", "hadoop103:9092");
// 等待所有副本节点的应答
props.put("acks", "all");
// 消息发送最大尝试次数
props.put("retries", 0);
// 一批消息处理大小
props.put("batch.size", 16384);
// 请求延时
props.put("linger.ms", 1);
// 发送缓存区内存大小
props.put("buffer.memory", 33554432);
// key序列化
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// value序列化
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 50; i++) {
producer.send(new ProducerRecord<String, String>("first", Integer.toString(i), "hello world-" + i));
}
producer.close();
}
}
package www.wcx;
import java.util.Properties;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
/**
* 项目: kafka
*
* 功能描述: 创建生产者带回调函数(新API)
*
* @author: WuChengXing
* @create: 2020-12-29 20:09
**/
public class CallBackProducer {
public static void main(String[] args) {
Properties props = new Properties();
// Kafka服务端的主机名和端口号
props.put("bootstrap.servers", "hadoop103:9092");
// 等待所有副本节点的应答
props.put("acks", "all");
// 消息发送最大尝试次数
props.put("retries", 0);
// 一批消息处理大小
props.put("batch.size", 16384);
// 增加服务端请求延时
props.put("linger.ms", 1);
// 发送缓存区内存大小
props.put("buffer.memory", 33554432);
// key序列化
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// value序列化
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(props);
for (int i = 0; i < 50; i++) {
kafkaProducer.send(new ProducerRecord<String, String>("first", "hello" + i), new Callback() {
@Override
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (metadata != null) {
System.err.println(metadata.partition() + "---" + metadata.offset());
}
}
});
}
kafkaProducer.close();
}
}
package www.wcx;
import java.util.Map;
import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
/**
* 项目: kafka
*
* 功能描述:
*
* @author: WuChengXing
* @create: 2020-12-29 20:13
**/
public class CustomPartitionerNew implements Partitioner {
@Override
public void configure(Map<String, ?> configs) {
}
@Override
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
// 控制分区
return 0;
}
@Override
public void close() {
}
}
在代码中调用:
package www.wcx;
import java.util.Properties;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
/**
* 项目: kafka
*
* 功能描述:
*
* @author: WuChengXing
* @create: 2020-12-29 20:15
**/
public class PartitionerProducer {
public static void main(String[] args) {
Properties props = new Properties();
// Kafka服务端的主机名和端口号
props.put("bootstrap.servers", "hadoop103:9092");
// 等待所有副本节点的应答
props.put("acks", "all");
// 消息发送最大尝试次数
props.put("retries", 0);
// 一批消息处理大小
props.put("batch.size", 16384);
// 增加服务端请求延时
props.put("linger.ms", 1);
// 发送缓存区内存大小
props.put("buffer.memory", 33554432);
// key序列化
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// value序列化
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
// 自定义分区
props.put("partitioner.class", "www.wcx.CustomPartitionerNew");
Producer<String, String> producer = new KafkaProducer<>(props);
producer.send(new ProducerRecord<>("first", "1", "atguigu"));
producer.close();
}
}
[root@hadoop102 kafka]# bin/kafka-console-producer.sh \
> --broker-list hadoop102:9092 --topic first
>hello world
>
package www.wcx;
import java.util.Arrays;
import java.util.Properties;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
/**
* 项目: kafka
*
* 功能描述:
*
* @author: WuChengXing
* @create: 2020-12-29 20:36
**/
public class CustomNewConsumer {
public static void main(String[] args) {
Properties props = new Properties();
// 定义kakfa 服务的地址,不需要将所有broker指定上
props.put("bootstrap.servers", "hadoop102:9092");
// 制定consumer group
props.put("group.id", "test");
// 是否自动确认offset
props.put("enable.auto.commit", "true");
// 自动确认offset的时间间隔
props.put("auto.commit.interval.ms", "1000");
// key的序列化类
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
// value的序列化类
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
// 定义consumer
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
// 消费者订阅的topic, 可同时订阅多个
consumer.subscribe(Arrays.asList("first", "second", "third"));
while (true) {
// 读取数据,读取超时时间为100ms
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records) {
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
}
}
}
Producer拦截器(interceptor)是在Kafka 0.10版本被引入的,主要用于实现clients端的定制化控制逻辑。
对于producer而言,interceptor使得用户在消息发送前以及producer回调逻辑前有机会对消息做一些定制化需求,比如修改消息等。同时,producer允许用户指定多个interceptor按序作用于同一条消息从而形成一个拦截链(interceptor chain)。Intercetpor的实现接口是org.apache.kafka.clients.producer.ProducerInterceptor,其定义的方法包括:
如前所述,interceptor可能被运行在多个线程中,因此在具体实现时用户需要自行确保线程安全。另外倘若指定了多个interceptor,则producer将按照指定顺序调用它们,并仅仅是捕获每个interceptor可能抛出的异常记录到错误日志中而非在向上传递。这在使用过程中要特别留意。
需求:
实现一个简单的双interceptor组成的拦截链。第一个interceptor会在消息发送前将时间戳信息加到消息value的最前部;第二个interceptor会在消息发送后更新成功发送消息数或失败发送消息数。
package www.wcx;
import java.util.Map;
import org.apache.kafka.clients.producer.ProducerInterceptor;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
/**
* 项目: kafka
*
* 功能描述:
*
* @author: WuChengXing
* @create: 2020-12-29 20:47
**/
public class TimeInterceptor implements ProducerInterceptor<String, String> {
@Override
public void configure(Map<String, ?> configs) {
}
@Override
public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
// 创建一个新的record,把时间戳写入消息体的最前部
return new ProducerRecord(record.topic(), record.partition(), record.timestamp(), record.key(),
System.currentTimeMillis() + "," + record.value().toString());
}
@Override
public void onAcknowledgement(RecordMetadata metadata, Exception exception) {
}
@Override
public void close() {
}
}
package www.wcx;
import java.util.Map;
import org.apache.kafka.clients.producer.ProducerInterceptor;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
/**
* 项目: kafka
*
* 功能描述:
*
* @author: WuChengXing
* @create: 2020-12-29 20:48
**/
public class CounterInterceptor implements ProducerInterceptor<String, String> {
private int errorCounter = 0;
private int successCounter = 0;
@Override
public void configure(Map<String, ?> configs) {
}
@Override
public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
return record;
}
@Override
public void onAcknowledgement(RecordMetadata metadata, Exception exception) {
// 统计成功和失败的次数
if (exception == null) {
successCounter++;
} else {
errorCounter++;
}
}
@Override
public void close() {
// 保存结果
System.out.println("Successful sent: " + successCounter);
System.out.println("Failed sent: " + errorCounter);
}
}
package www.wcx;
import java.util.Map;
import org.apache.kafka.clients.producer.ProducerInterceptor;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
/**
* 项目: kafka
*
* 功能描述:
*
* @author: WuChengXing
* @create: 2020-12-29 20:48
**/
public class CounterInterceptor implements ProducerInterceptor<String, String> {
private int errorCounter = 0;
private int successCounter = 0;
@Override
public void configure(Map<String, ?> configs) {
}
@Override
public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
return record;
}
@Override
public void onAcknowledgement(RecordMetadata metadata, Exception exception) {
// 统计成功和失败的次数
if (exception == null) {
successCounter++;
} else {
errorCounter++;
}
}
@Override
public void close() {
// 保存结果
System.out.println("Successful sent: " + successCounter);
System.out.println("Failed sent: " + errorCounter);
}
}
后续在数仓博客中会讲解kafka在大数据中的使用场景
感谢大家阅、互相学习;
感谢尚硅谷提供的学习资料;
gitee:很多代码仓库;
[email protected]