numpy.sort(a[, axis=-1, kind='quicksort', order=None])
Return a sorted copy of an array.
【例】
import numpy as np
dt = np.dtype([('name', 'S10'), ('age', np.int)])
a = np.array([("Mike", 21), ("Nancy", 25), ("Bob", 17), ("Jane", 27)], dtype=dt)
b = np.sort(a, order='name')
print(b)
# [(b'Bob', 17) (b'Jane', 27) (b'Mike', 21) (b'Nancy', 25)]
b = np.sort(a, order='age')
print(b)
# [(b'Bob', 17) (b'Mike', 21) (b'Nancy', 25) (b'Jane', 27)]
numpy.argsort(a[, axis=-1, kind='quicksort', order=None])
Returns the indices that would sort an array.【例】对数组沿给定轴执行间接排序,并使用指定排序类型返回数据的索引数组。这个索引数组用于构造排序后的数组。
import numpy as np
np.random.seed(20200612)
x = np.random.randint(0, 10, 10)
print(x)
# [6 1 8 5 5 4 1 2 9 1]
y = np.argsort(x)
print(y)
# [1 6 9 7 5 3 4 0 2 8]
print(x[y])
# [1 1 1 2 4 5 5 6 8 9]
y = np.argsort(-x)
print(y)
# [8 2 0 3 4 5 7 1 6 9]
print(x[y])
# [9 8 6 5 5 4 2 1 1 1]
numpy.lexsort(keys[, axis=-1])
Perform an indirect stable sort using a sequence of keys.(使用键序列执行间接稳定排序。)【例】
import numpy as np
x = np.array([1, 5, 1, 4, 3, 4, 4])
y = np.array([9, 4, 0, 4, 0, 2, 1])
a = np.lexsort([x])
b = np.lexsort([y])
print(a)
# [0 2 4 3 5 6 1]
print(x[a])
# [1 1 3 4 4 4 5]
print(b)
# [2 4 6 5 1 3 0]
print(y[b])
# [0 0 1 2 4 4 9]
z = np.lexsort([y, x])
print(z)
# [2 0 4 6 5 3 1]
print(x[z])
# [1 1 3 4 4 4 5]
z = np.lexsort([x, y])
print(z)
# [2 4 6 5 3 1 0]
print(y[z])
# [0 0 1 2 4 4 9]
numpy.partition(a, kth, axis=-1, kind='introselect', order=None)
Return a partitioned copy of an array.Creates a copy of the array with its elements rearranged in such a way that the value of the element in k-th position is in the position it would be in a sorted array. All elements smaller than the k-th element are moved before this element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined.
【例】以索引是第k大的元素为基准,将元素分成两部分,即大于该元素的放在其后面,小于该元素的放在其前面,这里有点类似于快排。
【例】选取每一列第三大的数据
import numpy as np
np.random.seed(100)
x = np.random.randint(1, 30, [8, 3])
print(x)
# [[ 9 25 4]
# [ 8 24 16]
# [17 11 21]
# [ 3 22 3]
# [ 3 15 3]
# [18 17 25]
# [16 5 12]
# [29 27 17]]
z = np.partition(x, kth=-3, axis=0)
print(z[-3])
# [17 24 17]
numpy.argpartition(a, kth, axis=-1, kind='introselect', order=None)
Perform an indirect partition along the given axis using the algorithm specified by the kind
keyword. It returns an array of indices of the same shape as a
that index data along the given axis in partitioned order.
【例】选取每一列第三大的数的索引
import numpy as np
np.random.seed(100)
x = np.random.randint(1, 30, [8, 3])
print(x)
# [[ 9 25 4]
# [ 8 24 16]
# [17 11 21]
# [ 3 22 3]
# [ 3 15 3]
# [18 17 25]
# [16 5 12]
# [29 27 17]]
z = np.argpartition(x, kth=-3, axis=0)
print(z[-3])
# [2 1 7]
numpy.argmax(a[, axis=None, out=None])
Returns the indices of the maximum values along an axis.numpy.argmin(a[, axis=None, out=None])
Returns the indices of the minimum values along an axis.numpy.nonzero(a)
Return the indices of the elements that are non-zero.,其值为非零元素的下标在对应轴上的值。
a
中非零元素才会有索引值,那些零值元素没有索引值。a.ndim
的元组(tuple),元组的每个元素都是一个整数数组(array)。a
是一个二维数组,则tuple包含两个array,第一个array从行维度来描述索引值;第二个array从列维度来描述索引值。np.transpose(np.nonzero(x))
函数能够描述出每一个非零元素在不同维度的索引值。a[nonzero(a)]
得到所有a
中的非零值。【例】二维数组
import numpy as np
x = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]])
print(x)
# [[3 0 0]
# [0 4 0]
# [5 6 0]]
print(x.shape) # (3, 3)
print(x.ndim) # 2
y = np.nonzero(x)
print(y)
# (array([0, 1, 2, 2], dtype=int64), array([0, 1, 0, 1], dtype=int64))
print(np.array(y))
# [[0 1 2 2]
# [0 1 0 1]]
print(np.array(y).shape) # (2, 4)
print(np.array(y).ndim) # 2
y = x[np.nonzero(x)]
print(y) # [3 4 5 6]
y = np.transpose(np.nonzero(x))
print(y)
# [[0 0]
# [1 1]
# [2 0]
# [2 1]]
【例】nonzero()
将布尔数组转换成整数数组进行操作。
import numpy as np
x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(x)
# [[1 2 3]
# [4 5 6]
# [7 8 9]]
y = x > 3
print(y)
# [[False False False]
# [ True True True]
# [ True True True]]
y = np.nonzero(x > 3)
print(y)
# (array([1, 1, 1, 2, 2, 2], dtype=int64), array([0, 1, 2, 0, 1, 2], dtype=int64))
y = x[np.nonzero(x > 3)]
print(y)
# [4 5 6 7 8 9]
y = x[x > 3]
print(y)
# [4 5 6 7 8 9]
numpy.where(condition, [x=None, y=None])
Return elements chosen from x
or y
depending on condition
.【例】满足条件condition
,输出x
,不满足输出y
。
import numpy as np
x = np.arange(10)
print(x)
# [0 1 2 3 4 5 6 7 8 9]
y = np.where(x < 5, x, 10 * x)
print(y)
# [ 0 1 2 3 4 50 60 70 80 90]
x = np.array([[0, 1, 2],
[0, 2, 4],
[0, 3, 6]])
y = np.where(x < 4, x, -1)
print(y)
# [[ 0 1 2]
# [ 0 2 -1]
# [ 0 3 -1]]
【例】只有condition
,没有x
和y
,则输出满足条件 (即非0) 元素的坐标 (等价于numpy.nonzero
)。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。
import numpy as np
x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.where(x > 5)
print(y)
# (array([5, 6, 7], dtype=int64),)
print(x[y])
# [6 7 8]
y = np.nonzero(x > 5)
print(y)
# (array([5, 6, 7], dtype=int64),)
print(x[y])
# [6 7 8]
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = np.where(x > 25)
print(y)
# (array([3, 3, 3, 3, 3, 4, 4, 4, 4, 4], dtype=int64), array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4], dtype=int64))
print(x[y])
# [26 27 28 29 30 31 32 33 34 35]
y = np.nonzero(x > 25)
print(y)
# (array([3, 3, 3, 3, 3, 4, 4, 4, 4, 4], dtype=int64), array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4], dtype=int64))
print(x[y])
# [26 27 28 29 30 31 32 33 34 35]
numpy.searchsorted(a, v[, side='left', sorter=None])
Find indices where elements should be inserted to maintain order.
sorter
参数为None
的时候,a
必须为升序数组;否则,sorter
不能为空,存放a
中元素的index
,用于反映a
数组的升序排列方式。a
数组的值,可以为单个元素,list
或者ndarray
。left
时,将返回第一个符合条件的元素下标;当为right
时,将返回最后一个符合条件的元素下标。a
数组元素的 index,index 对应元素为升序。【例】
import numpy as np
x = np.array([0, 1, 5, 9, 11, 18, 26, 33])
y = np.searchsorted(x, [-1, 0, 11, 15, 33, 35])
print(y) # [0 0 4 5 7 8]
y = np.searchsorted(x, [-1, 0, 11, 15, 33, 35], side='right')
print(y) # [0 1 5 5 8 8]
【例】
import numpy as np
x = np.array([0, 1, 5, 9, 11, 18, 26, 33])
np.random.shuffle(x)
print(x) # [33 1 9 18 11 26 0 5]
x_sort = np.argsort(x)
print(x_sort) # [6 1 7 2 4 3 5 0]
y = np.searchsorted(x, [-1, 0, 11, 15, 33, 35], sorter=x_sort)
print(y) # [0 0 4 5 7 8]
y = np.searchsorted(x, [-1, 0, 11, 15, 33, 35], side='right', sorter=x_sort)
print(y) # [0 1 5 5 8 8]
numpy.count_nonzero(a, axis=None)
Counts the number of non-zero values in the array a.【例】返回数组中的非0元素个数。
import numpy as np
x = np.count_nonzero(np.eye(4))
print(x) # 4
x = np.count_nonzero([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]])
print(x) # 5
x = np.count_nonzero([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]], axis=0)
print(x) # [1 1 1 1 1]
x = np.count_nonzero([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]], axis=1)
print(x) # [2 3]
numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None)
Find the unique elements of an array.
return_index=True
表示返回新列表元素在旧列表中的位置。return_inverse=True
表示返回旧列表元素在新列表中的位置。return_counts=True
表示返回新列表元素在旧列表中出现的次数。numpy.in1d(ar1, ar2, assume_unique=False, invert=False)
Test whether each element of a 1-D array is also present in a second array.Returns a boolean array the same length as ar1
that is True where an element of ar1
is in ar2
and False otherwise.
【例】前面的数组是否包含于后面的数组,返回布尔值。返回的值是针对第一个参数的数组的,所以维数和第一个参数一致,布尔值与数组的元素位置也一一对应。
import numpy as np
test = np.array([0, 1, 2, 5, 0])
states = [0, 2]
mask = np.in1d(test, states)
print(mask) # [ True False True False True]
print(test[mask]) # [0 2 0]
mask = np.in1d(test, states, invert=True)
print(mask) # [False True False True False]
print(test[mask]) # [1 5]
numpy.intersect1d(ar1, ar2, assume_unique=False, return_indices=False)
Find the intersection of two arrays.Return the sorted, unique values that are in both of the input arrays.
【例】求两个数组的唯一化+求交集+排序函数。
import numpy as np
from functools import reduce
x = np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
print(x) # [1 3]
x = np.array([1, 1, 2, 3, 4])
y = np.array([2, 1, 4, 6])
xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True)
print(x_ind) # [0 2 4]
print(y_ind) # [1 0 2]
print(xy) # [1 2 4]
print(x[x_ind]) # [1 2 4]
print(y[y_ind]) # [1 2 4]
x = reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
print(x) # [3]
numpy.union1d(ar1, ar2)
Find the union of two arrays.Return the unique, sorted array of values that are in either of the two input arrays.
【例】计算两个集合的并集,唯一化并排序。
import numpy as np
from functools import reduce
x = np.union1d([-1, 0, 1], [-2, 0, 2])
print(x) # [-2 -1 0 1 2]
x = reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
print(x) # [1 2 3 4 6]
'''
functools.reduce(function, iterable[, initializer])
将两个参数的 function 从左至右积累地应用到 iterable 的条目,以便将该可迭代对象缩减为单一的值。 例如,reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) 是计算 ((((1+2)+3)+4)+5) 的值。 左边的参数 x 是积累值而右边的参数 y 则是来自 iterable 的更新值。 如果存在可选项 initializer,它会被放在参与计算的可迭代对象的条目之前,并在可迭代对象为空时作为默认值。 如果没有给出 initializer 并且 iterable 仅包含一个条目,则将返回第一项。
大致相当于:
def reduce(function, iterable, initializer=None):
it = iter(iterable)
if initializer is None:
value = next(it)
else:
value = initializer
for element in it:
value = function(value, element)
return value
'''
numpy.setdiff1d(ar1, ar2, assume_unique=False)
Find the set difference of two arrays.Return the unique values in ar1
that are not in ar2
.
【例】集合的差,即元素存在于第一个函数不存在于第二个函数中。
import numpy as np
a = np.array([1, 2, 3, 2, 4, 1])
b = np.array([3, 4, 5, 6])
x = np.setdiff1d(a, b)
print(x) # [1 2]
setxor1d(ar1, ar2, assume_unique=False)
Find the set exclusive-or of two arrays.【例】集合的对称差,即两个集合的交集的补集。简言之,就是两个数组中各自独自拥有的元素的集合。
import numpy as np
a = np.array([1, 2, 3, 2, 4, 1])
b = np.array([3, 4, 5, 6])
x = np.setxor1d(a, b)
print(x) # [1 2 5 6]