nutch源码阅读(4)-Injector的第二个MapReduce

   JobConf mergeJob = CrawlDb.createJob(getConf(), crawlDb);
    //可以看到上一个MP的输出tempDir,就是这个MP的输入
    FileInputFormat.addInputPath(mergeJob, tempDir);
    mergeJob.setReducerClass(InjectReducer.class);
    JobClient.runJob(mergeJob);
    CrawlDb.install(mergeJob, crawlDb);

 

 public void configure(JobConf job) {
      interval = job.getInt("db.fetch.interval.default", 2592000);
      scoreInjected = job.getFloat("db.score.injected", 1.0f);
      overwrite = job.getBoolean("db.injector.overwrite", false);
      update = job.getBoolean("db.injector.update", false);
    }

 

 主要就是过滤和规范化

 public void map(Text key, CrawlDatum value,
      OutputCollector<Text, CrawlDatum> output,
      Reporter reporter) throws IOException {

    String url = key.toString();

    // https://issues.apache.org/jira/browse/NUTCH-1101 check status first, cheaper than normalizing or filtering
    if (url404Purging && CrawlDatum.STATUS_DB_GONE == value.getStatus()) {
      url = null;
    }
    if (urlNormalizers) {
      try {
        url = normalizers.normalize(url, scope); // normalize the url
      } catch (Exception e) {
        LOG.warn("Skipping " + url + ":" + e);
        url = null;
      }
    }
    if (url != null && urlFiltering) {
      try {
        url = filters.filter(url); // filter the url
      } catch (Exception e) {
        LOG.warn("Skipping " + url + ":" + e);
        url = null;
      }
    }
    if (url != null) { // if it passes
      newKey.set(url); // collect it
      output.collect(newKey, value);
    }
  }

 

 

 

 

 public static JobConf createJob(Configuration config, Path crawlDb)
    throws IOException {
    //生成输出目录
    Path newCrawlDb =
      new Path(crawlDb,
               Integer.toString(new Random().nextInt(Integer.MAX_VALUE)));

    JobConf job = new NutchJob(config);
    job.setJobName("crawldb " + crawlDb);

    Path current = new Path(crawlDb, CURRENT_NAME);
    if (FileSystem.get(job).exists(current)) {
      FileInputFormat.addInputPath(job, current);
    }
    job.setInputFormat(SequenceFileInputFormat.class);

    job.setMapperClass(CrawlDbFilter.class);
    job.setReducerClass(CrawlDbReducer.class);

    FileOutputFormat.setOutputPath(job, newCrawlDb);
    job.setOutputFormat(MapFileOutputFormat.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(CrawlDatum.class);

    // https://issues.apache.org/jira/browse/NUTCH-1110
    //hadoop的配置,是否生成job运行成功文件
    job.setBoolean("mapreduce.fileoutputcommitter.marksuccessfuljobs", false);

    return job;
  }

 

 

 public void reduce(Text key, Iterator<CrawlDatum> values,
                       OutputCollector<Text, CrawlDatum> output, Reporter reporter)
      throws IOException {
      boolean oldSet = false;
      boolean injectedSet = false;
      while (values.hasNext()) {
        CrawlDatum val = values.next();
        //判断url是新的还是已抓取过的
        if (val.getStatus() == CrawlDatum.STATUS_INJECTED) {
          injected.set(val);
          injected.setStatus(CrawlDatum.STATUS_DB_UNFETCHED);
          injectedSet = true;
        } else {
          old.set(val);
          oldSet = true;
        }
      }
      CrawlDatum res = null;
      
      /**
       * Whether to overwrite, ignore or update existing records
       * @see https://issues.apache.org/jira/browse/NUTCH-1405
       */
      
      // Injected record already exists and overwrite but not update
      //存在,重写,但不更新
      if (injectedSet && oldSet && overwrite) {
        res = injected;
        
        if (update) {
          LOG.info(key.toString() + " overwritten with injected record but update was specified.");
        }
      }

      // Injected record already exists and update but not overwrite
      //存在更新,但不重写的情况
      if (injectedSet && oldSet && update && !overwrite) {
        res = old;
        old.putAllMetaData(injected);
        old.setScore(injected.getScore() != scoreInjected ? injected.getScore() : old.getScore());
        old.setFetchInterval(injected.getFetchInterval() != interval ? injected.getFetchInterval() : old.getFetchInterval());
      }
      
      // Old default behaviour
      if (injectedSet && !oldSet) {
        res = injected;
      } else {
        res = old;
      }

      output.collect(key, res);
    }
  }

       基本就是将之前处理的数据汇总,判断是否对历史数据更新。

 

 

 public static void install(JobConf job, Path crawlDb) throws IOException {
    boolean preserveBackup = job.getBoolean("db.preserve.backup", true);

    Path newCrawlDb = FileOutputFormat.getOutputPath(job);
    FileSystem fs = new JobClient(job).getFs();
    Path old = new Path(crawlDb, "old");
    Path current = new Path(crawlDb, CURRENT_NAME);
    if (fs.exists(current)) {
      if (fs.exists(old)) fs.delete(old, true);
      fs.rename(current, old);
    }
    fs.mkdirs(crawlDb);
    fs.rename(newCrawlDb, current);
    if (!preserveBackup && fs.exists(old)) fs.delete(old, true);
    Path lock = new Path(crawlDb, LOCK_NAME);
    LockUtil.removeLockFile(fs, lock);
  }

 

 

CrawlDbFilter主要是对url进行过滤和正规化。
CrawlDbReducer主要是用来聚合相同url(老的与新产生的)的,这东东写得很复杂,下面来分析一下其源代码:

public void reduce(Text key, Iterator<CrawlDatum> values,
                     OutputCollector<Text, CrawlDatum> output, Reporter reporter)
    throws IOException {


    CrawlDatum fetch = new CrawlDatum();
    CrawlDatum old = new CrawlDatum();


    boolean fetchSet = false;
    boolean oldSet = false;
    byte[] signature = null;
    boolean multiple = false; // avoid deep copy when only single value exists
    linked.clear();
    org.apache.hadoop.io.MapWritable metaFromParse = null;
    
	// 这个循环主要是遍历所有相同url的value(CrawlDatum)值,对old和fetch两个变量进行赋值。
	// 和收集其外链接,把它们放入一个按分数排序的优先队列中去
    while (values.hasNext()) {
      CrawlDatum datum = (CrawlDatum)values.next();
	  // 判断是否要对CrawlDatum进行深度复制
      if (!multiple && values.hasNext()) multiple = true;
	  // 判断CrawlDatum中是否有数据库相关的参数,如STATUS_DB_(UNFETCHED|FETCHED|GONE|REDIR_TEMP|REDIR_PERM|NOTMODIFIED)
      if (CrawlDatum.hasDbStatus(datum)) {
        if (!oldSet) {
          if (multiple) {
            old.set(datum);
          } else {
            // no need for a deep copy - this is the only value
            old = datum;
          }
          oldSet = true;
        } else {
          // always take the latest version
		  // 总是得到最新的CrawlDatum版本
          if (old.getFetchTime() < datum.getFetchTime()) old.set(datum);
        }
        continue;
      }


		// 判断CrawlDatum是否有关抓取的状态,如STATUS_FETCH_(SUCCESS|RETRY|REDIR_TEMP|REDIR_PERM|GONE|NOTMODIFIED)
      if (CrawlDatum.hasFetchStatus(datum)) {
        if (!fetchSet) {
          if (multiple) {
            fetch.set(datum);
          } else {
            fetch = datum;
          }
          fetchSet = true;
        } else {
          // always take the latest version
          if (fetch.getFetchTime() < datum.getFetchTime()) fetch.set(datum);
        }
        continue;
      }


	// 根据CrawlDatum的状态来收集另一些信息
      switch (datum.getStatus()) {                // collect other info
		  // 如果这个CrawlDatum是一个外链接,那放入一个优先队列中,按分数的降序来做
      case CrawlDatum.STATUS_LINKED:
        CrawlDatum link;
        if (multiple) {
          link = new CrawlDatum();
          link.set(datum);
        } else {
          link = datum;
        }
        linked.insert(link);
        break;
      case CrawlDatum.STATUS_SIGNATURE:
	    // 得到其唯一ID号
        signature = datum.getSignature();
        break;
      case CrawlDatum.STATUS_PARSE_META:
	    // 得到其元数据
        metaFromParse = datum.getMetaData();
        break;
      default:
        LOG.warn("Unknown status, key: " + key + ", datum: " + datum);
      }
    }
    
    // copy the content of the queue into a List
    // in reversed order
    int numLinks = linked.size();
    List<CrawlDatum> linkList = new ArrayList<CrawlDatum>(numLinks);
    for (int i = numLinks - 1; i >= 0; i--) {
      linkList.add(linked.pop());
    }
    
	// 如果这个CrawlDatum集合中没有数据库相关的状态(也就是说没有这个url的原始状态)或者配置了不添加外链接,直接返回
    // if it doesn't already exist, skip it
    if (!oldSet && !additionsAllowed) return;
    
    // if there is no fetched datum, perhaps there is a link
	// 如果这个CrawlDatum集合中没有和抓取相关的状态,并且外链接数量要大于0
    if (!fetchSet && linkList.size() > 0) {
      fetch = linkList.get(0); // 得到第一个外链接
      fetchSet = true;
    }
    
    // still no new data - record only unchanged old data, if exists, and return
	// 如果没有抓取相头的状态,也没有外链接,也就是说这个CrawlDatum是老的,
    if (!fetchSet) {
		// 判断是否有和数据库相关的状态,有的话就输出,没有的话就直接返回
      if (oldSet) {// at this point at least "old" should be present
        output.collect(key, old);
      } else {
        LOG.warn("Missing fetch and old value, signature=" + signature);
      }
      return;
    }
    
	// 下面是用来初始化最新的CrawlDatum版本
    if (signature == null) signature = fetch.getSignature();
    long prevModifiedTime = oldSet ? old.getModifiedTime() : 0L;
    long prevFetchTime = oldSet ? old.getFetchTime() : 0L;


    // initialize with the latest version, be it fetch or link
    result.set(fetch);
    if (oldSet) {
      // copy metadata from old, if exists
      if (old.getMetaData().size() > 0) {
        result.putAllMetaData(old);
        // overlay with new, if any
        if (fetch.getMetaData().size() > 0)
          result.putAllMetaData(fetch);
      }
      // set the most recent valid value of modifiedTime
      if (old.getModifiedTime() > 0 && fetch.getModifiedTime() == 0) {
        result.setModifiedTime(old.getModifiedTime());
      }
    }
    
	下面是用来确定其最新的状态
    switch (fetch.getStatus()) {                // determine new status


    case CrawlDatum.STATUS_LINKED:                // it was link
      if (oldSet) {                          // if old exists
        result.set(old);                          // use it
      } else {
        result = schedule.initializeSchedule((Text)key, result);
        result.setStatus(CrawlDatum.STATUS_DB_UNFETCHED);
        try {
          scfilters.initialScore((Text)key, result);
        } catch (ScoringFilterException e) {
          if (LOG.isWarnEnabled()) {
            LOG.warn("Cannot filter init score for url " + key +
                     ", using default: " + e.getMessage());
          }
          result.setScore(0.0f);
        }
      }
      break;
      
    case CrawlDatum.STATUS_FETCH_SUCCESS:         // succesful fetch
    case CrawlDatum.STATUS_FETCH_REDIR_TEMP:      // successful fetch, redirected
    case CrawlDatum.STATUS_FETCH_REDIR_PERM:
    case CrawlDatum.STATUS_FETCH_NOTMODIFIED:     // successful fetch, notmodified
      // determine the modification status
      int modified = FetchSchedule.STATUS_UNKNOWN;
      if (fetch.getStatus() == CrawlDatum.STATUS_FETCH_NOTMODIFIED) {
        modified = FetchSchedule.STATUS_NOTMODIFIED;
      } else {
        if (oldSet && old.getSignature() != null && signature != null) {
          if (SignatureComparator._compare(old.getSignature(), signature) != 0) {
            modified = FetchSchedule.STATUS_MODIFIED;
          } else {
            modified = FetchSchedule.STATUS_NOTMODIFIED;
          }
        }
      }
      // set the schedule
      result = schedule.setFetchSchedule((Text)key, result, prevFetchTime,
          prevModifiedTime, fetch.getFetchTime(), fetch.getModifiedTime(), modified);
      // set the result status and signature
      if (modified == FetchSchedule.STATUS_NOTMODIFIED) {
        result.setStatus(CrawlDatum.STATUS_DB_NOTMODIFIED);
        if (oldSet) result.setSignature(old.getSignature());
      } else {
        switch (fetch.getStatus()) {
        case CrawlDatum.STATUS_FETCH_SUCCESS:
          result.setStatus(CrawlDatum.STATUS_DB_FETCHED);
          break;
        case CrawlDatum.STATUS_FETCH_REDIR_PERM:
          result.setStatus(CrawlDatum.STATUS_DB_REDIR_PERM);
          break;
        case CrawlDatum.STATUS_FETCH_REDIR_TEMP:
          result.setStatus(CrawlDatum.STATUS_DB_REDIR_TEMP);
          break;
        default:
          LOG.warn("Unexpected status: " + fetch.getStatus() + " resetting to old status.");
          if (oldSet) result.setStatus(old.getStatus());
          else result.setStatus(CrawlDatum.STATUS_DB_UNFETCHED);
        }
        result.setSignature(signature);
        if (metaFromParse != null) {
            for (Entry<Writable, Writable> e : metaFromParse.entrySet()) {
              result.getMetaData().put(e.getKey(), e.getValue());
            }
          }
      }
      // if fetchInterval is larger than the system-wide maximum, trigger
      // an unconditional recrawl. This prevents the page to be stuck at
      // NOTMODIFIED state, when the old fetched copy was already removed with
      // old segments.
      if (maxInterval < result.getFetchInterval())
        result = schedule.forceRefetch((Text)key, result, false);
      break;
    case CrawlDatum.STATUS_SIGNATURE:
      if (LOG.isWarnEnabled()) {
        LOG.warn("Lone CrawlDatum.STATUS_SIGNATURE: " + key);
      }   
      return;
    case CrawlDatum.STATUS_FETCH_RETRY:           // temporary failure
      if (oldSet) {
        result.setSignature(old.getSignature());  // use old signature
      }
      result = schedule.setPageRetrySchedule((Text)key, result, prevFetchTime,
          prevModifiedTime, fetch.getFetchTime());
      if (result.getRetriesSinceFetch() < retryMax) {
        result.setStatus(CrawlDatum.STATUS_DB_UNFETCHED);
      } else {
        result.setStatus(CrawlDatum.STATUS_DB_GONE);
      }
      break;


    case CrawlDatum.STATUS_FETCH_GONE:            // permanent failure
      if (oldSet)
        result.setSignature(old.getSignature());  // use old signature
      result.setStatus(CrawlDatum.STATUS_DB_GONE);
      result = schedule.setPageGoneSchedule((Text)key, result, prevFetchTime,
          prevModifiedTime, fetch.getFetchTime());
      break;


    default:
      throw new RuntimeException("Unknown status: " + fetch.getStatus() + " " + key);
    }


	// 这里用来更新result的分数
    try {
      scfilters.updateDbScore((Text)key, oldSet ? old : null, result, linkList);
    } catch (Exception e) {
      if (LOG.isWarnEnabled()) {
        LOG.warn("Couldn't update score, key=" + key + ": " + e);
      }
    }
    // remove generation time, if any
    result.getMetaData().remove(Nutch.WRITABLE_GENERATE_TIME_KEY);
    output.collect(key, result);   // 写出数据
  }
  
}

其中流程就是对三个目录进行合并,对相同的url的value(CrawlDatum)进行聚合,产生新的CarwlDatum,再写回原来的数据库中。

你可能感兴趣的:(mapreduce)