Spark算子:RDD键值转换操作(4)–cogroup、join – lxw的大数据田地

关键字:Spark算子、Spark RDD键值转换、cogroup、join

cogroup

##参数为1个RDD

def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]

def cogroup[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (Iterable[V], Iterable[W]))]

def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (Iterable[V], Iterable[W]))]

 

##参数为2个RDD

def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)]): RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))]

def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], numPartitions: Int): RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))]

def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], partitioner: Partitioner): RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))]

 

##参数为3个RDD

def cogroup[W1, W2, W3](other1: RDD[(K, W1)], other2: RDD[(K, W2)], other3: RDD[(K, W3)]): RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))]

def cogroup[W1, W2, W3](other1: RDD[(K, W1)], other2: RDD[(K, W2)], other3: RDD[(K, W3)], numPartitions: Int): RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))]

def cogroup[W1, W2, W3](other1: RDD[(K, W1)], other2: RDD[(K, W2)], other3: RDD[(K, W3)], partitioner: Partitioner): RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))]

 

cogroup相当于SQL中的全外关联full outer join,返回左右RDD中的记录,关联不上的为空。

参数numPartitions用于指定结果的分区数。

参数partitioner用于指定分区函数。

##参数为1个RDD的例子

   
   
   
   
  1. var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)
  2. var rdd2 = sc.makeRDD(Array(("A","a"),("C","c"),("D","d")),2)
  3.  
  4. scala> var rdd3 =rdd1.cogroup(rdd2)rdd3: org.apache.spark.rdd.RDD[(String, (Iterable[String], Iterable[String]))] = MapPartitionsRDD[12] at cogroup at :25
  5.  
  6. scala> rdd3.partitions.size
  7. res3: Int = 2
  8.  
  9. scala> rdd3.collect
  10. res1: Array[(String, (Iterable[String], Iterable[String]))] = Array(
  11. (B,(CompactBuffer(2),CompactBuffer())),
  12. (D,(CompactBuffer(),CompactBuffer(d))),
  13. (A,(CompactBuffer(1),CompactBuffer(a))),
  14. (C,(CompactBuffer(3),CompactBuffer(c)))
  15. )
  16.  
  17.  
  18. scala> var rdd4 =rdd1.cogroup(rdd2,3)rdd4: org.apache.spark.rdd.RDD[(String, (Iterable[String], Iterable[String]))] = MapPartitionsRDD[14] at cogroup at :25
  19.  
  20. scala> rdd4.partitions.size
  21. res5: Int = 3
  22.  
  23. scala> rdd4.collect
  24. res6: Array[(String, (Iterable[String], Iterable[String]))] = Array(
  25. (B,(CompactBuffer(2),CompactBuffer())),
  26. (C,(CompactBuffer(3),CompactBuffer(c))),
  27. (A,(CompactBuffer(1),CompactBuffer(a))),
  28. (D,(CompactBuffer(),CompactBuffer(d))))

##参数为2个RDD的例子

   
   
   
   
  1. var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)
  2. var rdd2 = sc.makeRDD(Array(("A","a"),("C","c"),("D","d")),2)
  3. var rdd3 = sc.makeRDD(Array(("A","A"),("E","E")),2)
  4.  
  5. scala> var rdd4 =rdd1.cogroup(rdd2,rdd3)rdd4: org.apache.spark.rdd.RDD[(String, (Iterable[String], Iterable[String], Iterable[String]))] =
  6. MapPartitionsRDD[17] at cogroup at :27
  7.  
  8. scala> rdd4.partitions.size
  9. res7: Int = 2
  10.  
  11. scala> rdd4.collect
  12. res9: Array[(String, (Iterable[String], Iterable[String], Iterable[String]))] = Array(
  13. (B,(CompactBuffer(2),CompactBuffer(),CompactBuffer())),
  14. (D,(CompactBuffer(),CompactBuffer(d),CompactBuffer())),
  15. (A,(CompactBuffer(1),CompactBuffer(a),CompactBuffer(A))),
  16. (C,(CompactBuffer(3),CompactBuffer(c),CompactBuffer())),
  17. (E,(CompactBuffer(),CompactBuffer(),CompactBuffer(E))))

##参数为3个RDD示例略,同上。

join

def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]

def join[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (V, W))]

def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))]

 

join相当于SQL中的内关联join,只返回两个RDD根据K可以关联上的结果,join只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可。

参数numPartitions用于指定结果的分区数

参数partitioner用于指定分区函数

   
   
   
   
  1. var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)
  2. var rdd2 = sc.makeRDD(Array(("A","a"),("C","c"),("D","d")),2)
  3.  
  4. scala> rdd1.join(rdd2).collect
  5. res10: Array[(String, (String, String))] = Array((A,(1,a)), (C,(3,c)))

更多关于Spark算子的介绍,可参考Spark算子系列文章:

http://lxw1234.com/archives/2015/07/363.htm

如果觉得本博客对您有帮助,请赞助作者。

转载请注明:lxw的大数据田地»Spark算子:RDD键值转换操作(4)–cogroup、join

喜欢 (10)分享 (0)

你可能感兴趣的:(spark,算子,rdd)