关键字:Spark算子、Spark RDD键值转换、cogroup、join
cogroup
##参数为1个RDD
def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]
def cogroup[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (Iterable[V], Iterable[W]))]
def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (Iterable[V], Iterable[W]))]
##参数为2个RDD
def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)]): RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))]
def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], numPartitions: Int): RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))]
def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], partitioner: Partitioner): RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))]
##参数为3个RDD
def cogroup[W1, W2, W3](other1: RDD[(K, W1)], other2: RDD[(K, W2)], other3: RDD[(K, W3)]): RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))]
def cogroup[W1, W2, W3](other1: RDD[(K, W1)], other2: RDD[(K, W2)], other3: RDD[(K, W3)], numPartitions: Int): RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))]
def cogroup[W1, W2, W3](other1: RDD[(K, W1)], other2: RDD[(K, W2)], other3: RDD[(K, W3)], partitioner: Partitioner): RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))]
cogroup相当于SQL中的全外关联full outer join,返回左右RDD中的记录,关联不上的为空。
参数numPartitions用于指定结果的分区数。
参数partitioner用于指定分区函数。
##参数为1个RDD的例子
- var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)
- var rdd2 = sc.makeRDD(Array(("A","a"),("C","c"),("D","d")),2)
- scala> var rdd3 =rdd1.cogroup(rdd2)rdd3: org.apache.spark.rdd.RDD[(String, (Iterable[String], Iterable[String]))] = MapPartitionsRDD[12] at cogroup at :25
- scala> rdd3.partitions.size
- res3: Int = 2
- scala> rdd3.collect
- res1: Array[(String, (Iterable[String], Iterable[String]))] = Array(
- (B,(CompactBuffer(2),CompactBuffer())),
- (D,(CompactBuffer(),CompactBuffer(d))),
- (A,(CompactBuffer(1),CompactBuffer(a))),
- (C,(CompactBuffer(3),CompactBuffer(c)))
- )
- scala> var rdd4 =rdd1.cogroup(rdd2,3)rdd4: org.apache.spark.rdd.RDD[(String, (Iterable[String], Iterable[String]))] = MapPartitionsRDD[14] at cogroup at :25
- scala> rdd4.partitions.size
- res5: Int = 3
- scala> rdd4.collect
- res6: Array[(String, (Iterable[String], Iterable[String]))] = Array(
- (B,(CompactBuffer(2),CompactBuffer())),
- (C,(CompactBuffer(3),CompactBuffer(c))),
- (A,(CompactBuffer(1),CompactBuffer(a))),
- (D,(CompactBuffer(),CompactBuffer(d))))
##参数为2个RDD的例子
- var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)
- var rdd2 = sc.makeRDD(Array(("A","a"),("C","c"),("D","d")),2)
- var rdd3 = sc.makeRDD(Array(("A","A"),("E","E")),2)
- scala> var rdd4 =rdd1.cogroup(rdd2,rdd3)rdd4: org.apache.spark.rdd.RDD[(String, (Iterable[String], Iterable[String], Iterable[String]))] =
- MapPartitionsRDD[17] at cogroup at :27
- scala> rdd4.partitions.size
- res7: Int = 2
- scala> rdd4.collect
- res9: Array[(String, (Iterable[String], Iterable[String], Iterable[String]))] = Array(
- (B,(CompactBuffer(2),CompactBuffer(),CompactBuffer())),
- (D,(CompactBuffer(),CompactBuffer(d),CompactBuffer())),
- (A,(CompactBuffer(1),CompactBuffer(a),CompactBuffer(A))),
- (C,(CompactBuffer(3),CompactBuffer(c),CompactBuffer())),
- (E,(CompactBuffer(),CompactBuffer(),CompactBuffer(E))))
##参数为3个RDD示例略,同上。
join
def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]
def join[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (V, W))]
def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))]
join相当于SQL中的内关联join,只返回两个RDD根据K可以关联上的结果,join只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可。
参数numPartitions用于指定结果的分区数
参数partitioner用于指定分区函数
- var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)
- var rdd2 = sc.makeRDD(Array(("A","a"),("C","c"),("D","d")),2)
- scala> rdd1.join(rdd2).collect
- res10: Array[(String, (String, String))] = Array((A,(1,a)), (C,(3,c)))
更多关于Spark算子的介绍,可参考Spark算子系列文章:
http://lxw1234.com/archives/2015/07/363.htm
如果觉得本博客对您有帮助,请赞助作者。
转载请注明:lxw的大数据田地»Spark算子:RDD键值转换操作(4)–cogroup、join