- Spark入门:KMeans聚类算法
17111_Chaochao1984a
算法sparkkmeans
聚类(Clustering)是机器学习中一类重要的方法。其主要思想使用样本的不同特征属性,根据某一给定的相似度度量方式(如欧式距离)找到相似的样本,并根据距离将样本划分成不同的组。聚类属于典型的无监督学习(UnsupervisedLearning)方法。与监督学习(如分类器)相比1,无监督学习的训练集没有人为标注的结果。在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。
- Spark MLlib模型训练—聚类算法 Bisecting K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法BisectingK-means由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选到一个类上,一定程度上克服了算法陷入局部最优状态。二分KMeans(BisectingKMeans)算法的主要思想是:首先将所有点作为一个簇
- 程序猿成长之路之数据挖掘篇——Kmeans聚类算法
zygswo
数据挖掘数据挖掘算法kmeans
Kmeans是一种可以将一个数据集按照距离(相似度)划分成不同类别的算法,它无需借助外部标记,因此也是一种无监督学习算法。什么是聚类用官方的话说聚类就是将物理或抽象对象的集合分成由类似的对象组成的多个类的过程。用自己的话说聚类是根据不同样本数据间的相似度进行种类划分的算法。这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布。什么是K-means聚类用官方的
- 聚类算法-Kmeans聚类
红米煮粥
机器学习kmeans聚类
一、K-means聚类介绍1.含义K-means聚类是一种非常流行的无监督学习算法,用于将数据点划分为预定义的K个簇(或组),其中每个簇由其质心(即簇中所有点的均值)定义。K-means算法的目标是使簇内的点尽可能紧密地聚集在一起,同时使不同簇之间的点尽可能远离。2.基本步骤:选择K值:首先,你需要决定将数据分成多少个簇,即K的值。K的选择通常是基于问题的上下文或通过一些启发式方法(如肘部法则)来
- 机器学习 | 距离计算
X1AO___X1A
机器学习基础无监督学习#聚类算法机器学习无监督学习聚类距离计算
文章目录距离计算1.闵可夫斯基距离(有序属性)1.1曼哈顿距离1.2欧氏距离2.VDM距离(无序属性)3.MinkovDM距离(混合属性)4.加权距离(重要性不同)参考资料相关文章:机器学习|目录机器学习|聚类评估指标无监督学习|KMeans与KMeans++原理无监督学习|KMeans之Skleaen实现:电影评分聚类距离计算对函数dist(⋅,⋅)dist(\cdot,\cdot)dist(⋅
- GWO优化kmeans
2301_78492934
机器学习算法人工智能matlabkmeans聚类
GWO(灰狼优化器)是一种群体智能优化算法,它模拟了灰狼的社会结构和狩猎行为。GWO算法通过模拟灰狼的等级制度、狩猎策略和搜索机制来寻找问题的最优解。而K-means是一种经典的聚类算法,用于将数据点划分为K个簇。将GWO优化算法应用于K-means聚类中,主要是为了解决K-means算法对初始簇中心敏感和容易陷入局部最优解的问题。以下是GWO优化K-means的原理和过程的详细介绍:1.GWO算
- R语言Apriori关联规则、kmeans聚类、决策树挖掘研究京东商城网络购物用户行为数据可视化|附代码数据
数据挖掘
全文链接:http://tecdat.cn/?p=30360最近我们被客户要求撰写关于网络购物用户行为的研究报告,包括一些图形和统计输出。随着网络的迅速发展,依托于网络的购物作为一种新型的消费方式,在全国乃至全球范围内飞速发展电子商务成为越来越多消费者购物的重要途径。我们被客户要求撰写关于网络购物行为的研究报告。项目计划使用数据挖掘的方法,以京东商城网购用户的网络购物数据为基础,对网络购物行为的三
- 基于聚类的点云背景分离算法python代码
love6a6
算法聚类python
点云背景分离是一个常用的计算机视觉任务,它旨在从点云数据中分离出感兴趣的物体。聚类是一种常用的方法,可以通过将相似的点聚集在一起来完成背景分离。下面是一个简单的基于K-Means聚类的点云背景分离的Python代码示例,使用的是scikit-learn库:importnumpyasnpfromsklearn.clusterimportKMeansfromsklearn.preprocessingi
- open3d k-means 聚类
云杂项
open3d持续更新kmeans聚类算法计算机视觉python机器学习
k-means聚类一、算法原理1、介绍2、算法步骤二、代码1、机器学习生成`kmeans`聚类2、点云学习生成聚类三、结果1、原点云2、机器学习生成`kmeans`聚类3、点云学习生成聚类四、相关链接一、算法原理1、介绍K-means聚类算法是一种无监督学习算法,主要用于数据聚类。该算法的主要目标是找到一个数据点的划分,使得每个数据点与其所在簇的质心(即该簇所有数据点的均值)之间的平方距离之和最小
- Kmeans、混合高斯模型、EM 算法
dreampai
混合高斯模型(MixturesofGaussians)和EM算法image.pngKmeans与EM算法E步是确定隐含类别变量CM步更新其他参数u(质心)来时J(平方误差)最小化隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。总体思想还是一个迭代优化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估
- python opencv 利用kmeans提取图像主颜色
羊羊羊羊羊羊羊--
pythonopencv
#包importcv2ascvimportnumpyasnpimportmatplotlib.pyplotaspltimportPIL%matplotlibinlinefromcollectionsimportCounterdefcalculate_perc(k_cluster):width=300palette=np.zeros((50,width,3),np.uint8)n_pixels=le
- 机器学习原型聚类
黄粱梦醒
1.原型聚类原型聚类即“基于原型的聚类”(prototype-basedclustering),原型表示模板的意思,就是通过参考一个模板向量或模板分布的方式来完成聚类的过程,常见的K-Means便是基于簇中心来实现聚类,混合高斯聚类则是基于簇分布来实现聚类。1.2kmeans1.2.1基本原理K-means是一种常见的聚类算法,也叫k均值或k平均。通过迭代的方式,每次迭代都将数据集中的各个点划分到
- 基于用户评分Kmeans聚类的协同过滤推荐算法实现(附源代码)
linge511873822
基于用户的协同过滤推荐算法Kmeans聚类聚类协同过滤推荐Kmeans聚类协同过滤推荐用户Kmeans聚类推荐
基于用户评分Kmeans聚类的协同过滤推荐算法实现一:基于用户评分Kmeans聚类的协同过滤推荐算法实现步骤1、构建用户-电影评分矩阵:publicObjectreadFile(StringfileName){Listuser=newArrayList();double[][]weight=newdouble[user_num][keyword_num];Listobj=newArrayList(
- Kmeans聚类算法实现(输出聚类过程,分布图展示)
linge511873822
基于项目的协同过滤推荐算法基于用户的协同过滤推荐算法Kmeans聚类算法协同过滤聚类算法kmeans协同过滤聚类聚类算法协同过滤协同过滤数据聚类
Kmeans聚类算法实现(输出聚类过程,分布图展示)Kmeans聚类算法是聚类算法中最基础最常用的聚类算法,算法很简单,主要是将距离最近的点聚到一起,不断遍历点与簇中心的距离,并不断修正簇中心的位置与簇中的点集合,通过最近距离和遍历次数来控制输出最终的结果。初始的簇中心、遍历次数、最小距离会影响最终的结果。具体的聚类算法过程不详细讲解,网上资料很多,本文主要是java语言实现,1000个点(本文是
- [解决sklearn的KMeans运行报错]AttributeError: ‘NoneType‘ object has no attribute ‘split‘
哈仔康康
kmeans算法机器学习
将threadpoolctl从版本2.2.0升级到版本3.1.0pipinstall--upgradethreadpoolctl==3.1.0
- 159基于matlab的基于密度的噪声应用空间聚类(DBSCAN)算法对点进行聚类
顶呱呱程序
matlab工程应用算法matlab聚类无监督学习基于密度的噪声应用空间聚类
基于matlab的基于密度的噪声应用空间聚类(DBSCAN)算法对点进行聚类,聚类结果效果好,DBSCAN不要求我们指定集群的数量,避免了异常值,并且在任意形状和大小的集群中工作得非常好。它没有质心,聚类簇是通过将相邻的点连接在一起的过程形成的。优于kmeans。程序已调通,可直接运行。159基于密度的噪声应用空间聚类无监督学习(xiaohongshu.com)
- 机器学习各种算法汇总模板
怎么菜成这样
机器学习机器学习python算法随机森林支持向量机
机器学习算法模板包含了KNN,线性回归,逻辑回归,朴素贝叶斯,决策树,支持向量机,随机森林,kmeans,集成算法各种算法,特征工程,评估方式任你选择!!!#导包fromsklearn.neighborsimportKNeighborsClassifierfromsklearn.linear_modelimportLinearRegressionfromsklearn.naive_bayesimp
- R语言编程-Tidyverse 书籍 - 第三章 - 统计建模
Hello育种
1整洁模型结果-broom包tidyverse主张以‘‘整洁的”数据框作为输入,但是lm,nls,t.test,kmeans等模型的输出结果,却是‘‘不整洁的”列表。broom包实现将模型输出结果转化为整洁的tibble,且列名规范一致,方便后续取用;另外,与tidyr包中的nest()/unnest()函数以及purrr包中的map_*()系列函数连用,非常便于批量建模和批量整合模型结果。bro
- 【吴恩达机器学习】第八周—聚类降维Kmeans算法
Sunflow007
31.jpg1.聚类(Clustering)1.1介绍之前的课程介绍的都是监督学习、而聚类属于非监督学习,在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:1.png在这里我们有一系列点,却没有标签
- 【机器学习】Kmeans如何选择k值
TwcatL_tree
机器学习人工智能深度学习机器学习kmeans人工智能
确定K值是K-means聚类分析的一个重要步骤。不同的K值可能会产生不同的聚类结果,因此选择合适的K值非常重要。以下是一些常见的方法来选择K值:手肘法:该方法基于绘制聚类内误差平方和(SSE)与K值之间的关系图。随着K值的增加,SSE会逐渐降低,但降低幅度逐渐减小。手肘法的目标就是找到SSE下降的速度开始变慢的“拐点”,这个点就是最佳的K值。轮廓系数法:该方法基于每个数据点与它所属的聚类中心的距离
- sklearn kmeans 聚类中心_Kmeans聚类算法
weixin_39997695
sklearnkmeans聚类中心
1引例经过前面一些列的介绍,我们已经接触到了多种回归和分类算法。并且这些算法有一个共同的特点,那就是它们都是有监督的(supervised)学习任务。接下来,笔者就开始向大家介绍一种无监督的(unsupervised)经典机器学习算法——聚类。同时,由于笔者仅仅只是对Kmeans框架下的聚类算法较为熟悉,因此在后续的几篇文章中笔者将只会介绍Kmeans框架下的聚类算法,包括:Kmeans、Kmea
- sklearn-第五节(K-means算法)
~一段浮华
sklearn算法kmeans
1.k-means聚类算法思想kmeans算法又名k均值算法,K-means算法中的k表示的是聚类为k个簇,means代表取每一个聚类中数据值的均值作为该簇的中心,或者称为质心,即用每一个的类的质心对该簇进行描述。其算法思想大致为:先从样本集中随机选取k个样本作为簇中心,并计算所有样本与这k个“簇中心”的距离,对于每一个样本,将其划分到与其距离最近的“簇中心”所在的簇中,对于新的簇计算各个簇的新的
- kmeans实例及代码
morie_li
聚类和决策树一样,属于无监督学习。也就是说数据样本只有特征x,没有给定y。聚类的目的是找到样本特征潜在的类别,将同类别的样本放在一起。kmeans的具体逻辑如下:1.随机选取k个簇心;2.对于每一个样例,计算其属于的类;3.循环完所有的样例后,重新计算每个簇的簇心;4.重复第二步第三部,直到簇心不再变化或达到最大迭代值。importnumpyasnpimportmatplotlib.pyplota
- Sklearn之StandardScaler(数据预处理)
爱睡觉的琪
sklearn机器学习python
1.哪些机器学习算法不需要(需要)做归一化?概率模型(树形模型)不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率,如决策树、RF、XGboost。而像Adaboost、SVM、LR、Knn、KMeans之类的最优化问题就需要归一化。2.StandardScaler原理作用:使得经过处理的数据符合标准正态分布,即均值为0,标准差为1。且是针对每一个特征维度来做的,而不是针
- 数据无量纲化 学习(1):三种常用数据缩放方法的对比:StandardScaler、MinMaxScaler、RobustScaler
Tony Einstein
特征工程机器学习python算法特征工程数据标准化
一、数据无量纲化将不同规格的数据转换到同一规格,或将不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”。在以梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度;在距离类模型,譬如K近邻,KMeans聚类中,无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响。一个特例是决策树和树的集成算法们,对决策树、不需要无量
- 全面解析 Kmeans 聚类算法(Python)
AI科技大本营
算法聚类python机器学习人工智能
作者|泳鱼来源|算法进阶一、聚类简介Clustering(聚类)是常见的unsupervisedlearning(无监督学习)方法,简单地说就是把相似的数据样本分到一组(簇),聚类的过程,我们并不清楚某一类是什么(通常无标签信息),需要实现的目标只是把相似的样本聚到一起,即只是利用样本数据本身的分布规律。聚类算法可以大致分为传统聚类算法以及深度聚类算法:传统聚类算法主要是根据原特征+基于划分/密度
- python实现K-means的代码
噶噶~
统计学机器学习pythonkmeans机器学习
importpandasaspdfromdatetimeimport*fromsklearn.clusterimportKMeansfromscipy.spatial.distanceimportcdistimportmatplotlib.pyplotaspltfrompylabimport*mpl.rcParams['font.sans-serif']=['SimHei']mpl.rcParam
- [Python] 什么是KMeans聚类算法以及scikit-learn中的KMeans使用案例
老狼IT工作室
python机器学习pythonscikit-learn
什么是无监督学习?无监督学习是机器学习中的一种方法,其主要目的是从无标签的数据集中发现隐藏的模式、结构或者规律。在无监督学习中,算法不依赖于任何先验的标签信息,而是根据数据本身的特征和规律进行学习和推断。无监督学习通常用于聚类、降维、异常检测等任务。在聚类中,算法会将相似的数据点归为一类;在降维中,算法会将高维数据映射到低维空间;在异常检测中,算法会发现与其他数据不同的离群点。无监督学习是与有监督
- kmeans聚类算法C++实现
crazybobo1207
算法kmeans聚类c++
先上作业题,大一的童鞋写这个,确实有一丁丁难。题目中出现了“这些点不重合”、“挑选K个不同点”的字眼,对于前者,使用c++的set可以直接去重,对于后者,可以采用“不放回抽样”。第一步,搭好程序框架,设计好数据结构,不涉及具体算法。看起来有些多,其实有些代码可以不要,比如用彩色输出内容。里面有一些c++的语法,可以用c替换,比如:容器vectorvec_all_point;可以替换为结构体数组Po
- kmeans聚类代码
kelly1250230225
聚类kmeans机器学习
参考知乎大神的技术代码代码教程一列数据聚类,现在将代码贴上,中间有图显示有点问题,但是不影响最后结果的输出importpandasaspdimportseabornassnsimportmatplotlib.pyplotaspltimportwarningsfromsklearn.clusterimportKMeanswarnings.filterwarnings('ignore')mos=pd.
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》