02_pandas获取数据(指定列获取、[]方式获取、loc函数,at函数, iloc函数 iat函数)

获取数据

通过指定列的方式获取数据

选择单独一列,通过这种方式获取一个Series,等价于df.A

import numpy as np
import pandas as pd

# 通过设置开始时间,并设置间隔了多少月
dates = pd.date_range('20130101',periods=6)

# 随机生成一个6行4列的值
# print(np.random.randn(6,4))

# 设置dates为行,ABCD为列的标题值,np.random.randn(6, 4)为行和列中的值
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
print(df)
print("------------获取一列数据,包括index的值------------")
print(df['A'])

输出结果:

                   A         B         C         D
2013-01-01 -1.254715  0.208110 -0.961949 -0.370242
2013-01-02  0.080537  0.262347  1.113138 -2.134468
2013-01-03  1.021890 -0.701764  1.200650  2.187048
2013-01-04 -1.061324 -2.099654 -0.036560  1.200454
2013-01-05 -1.517845  0.198959  1.660779 -0.749684
2013-01-06  0.789730 -0.066244  0.622702 -0.876385
---------------获取一列数据--------------
2013-01-01   -1.254715
2013-01-02    0.080537
2013-01-03    1.021890
2013-01-04   -1.061324
2013-01-05   -1.517845
2013-01-06    0.789730
Freq: D, Name: A, dtype: float64

通过[]来选择一些行的数据

import numpy as np
import pandas as pd

# 通过设置开始时间,并设置间隔了多少月
dates = pd.date_range('20130101',periods=6)

# 随机生成一个6行4列的值
# print(np.random.randn(6,4))

# 设置dates为行,ABCD为列的标题值,np.random.randn(6, 4)为行和列中的值
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
print(df)
print("------------通过[]获取一些行的数据------------")
print(df[0:3])

输出结果:

                   A         B         C         D
2013-01-01 -0.472598  0.634512 -1.154252  0.650860
2013-01-02 -1.020034  2.215081  0.152721 -1.132280
2013-01-03 -0.976544 -0.292899  0.022719 -0.468406
2013-01-04 -1.367970 -0.087343 -0.590131 -0.279336
2013-01-05 -1.295620 -1.630914 -1.304561 -1.334444
2013-01-06 -0.790731  1.043622 -0.772808  0.564674
------------通过[]获取一些行的数据------------
                   A         B         C         D
2013-01-01 -0.472598  0.634512 -1.154252  0.650860
2013-01-02 -1.020034  2.215081  0.152721 -1.132280
2013-01-03 -0.976544 -0.292899  0.022719 -0.468406

再如:

import numpy as np
import pandas as pd

# 通过设置开始时间,并设置间隔了多少月
dates = pd.date_range('20130101',periods=6)

# 随机生成一个6行4列的值
# print(np.random.randn(6,4))

# 设置dates为行,ABCD为列的标题值,np.random.randn(6, 4)为行和列中的值
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
print(df)
print("------------通过[]获取一些行的数据------------")
print(df['20130102':'20130104'] )

输出结果为:

                   A         B         C         D
2013-01-01 -1.253099  0.378643 -0.119608  1.971239
2013-01-02 -0.425589 -0.689410 -1.373875 -1.027356
2013-01-03 -1.302570 -0.182313  1.564062  0.059378
2013-01-04  0.637397  0.330284  0.607045 -0.928848
2013-01-05  0.106358  1.431572  0.789533  1.483123
2013-01-06  2.089771  0.823074  0.362509 -0.206203
------------通过[]获取一些行的数据------------
                   A         B         C         D
2013-01-02 -0.425589 -0.689410 -1.373875 -1.027356
2013-01-03 -1.302570 -0.182313  1.564062  0.059378
2013-01-04  0.637397  0.330284  0.607045 -0.928848

通过label的值查找loc函数,at函数

import numpy as np
import pandas as pd

# 通过设置开始时间,并设置间隔了多少月
dates = pd.date_range('20130101',periods=6)

# 随机生成一个6行4列的值
# print(np.random.randn(6,4))

# 设置dates为行,ABCD为列的标题值,np.random.randn(6, 4)为行和列中的值
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
print(df)
print("------------Selected by label------------")
print(df.loc[dates[0]])

输出结果为:

                   A         B         C         D
2013-01-01  1.280903  0.512179 -0.231190  0.036669
2013-01-02 -0.540552 -0.878910  0.918104  1.878132
2013-01-03 -1.106968 -0.176439 -1.247349  0.994883
2013-01-04  0.260098 -0.885501  0.346970  2.435448
2013-01-05  1.110520  1.756852 -2.025549  0.566382
2013-01-06  1.405610 -1.663422 -0.071328 -0.778265
------------Selected by label------------
A    1.280903
B    0.512179
C   -0.231190
D    0.036669
Name: 2013-01-01 00:00:00, dtype: float64

选择多行多列的值:

import numpy as np
import pandas as pd

# 通过设置开始时间,并设置间隔了多少月
dates = pd.date_range('20130101',periods=6)

# 随机生成一个6行4列的值
# print(np.random.randn(6,4))

# 设置dates为行,ABCD为列的标题值,np.random.randn(6, 4)为行和列中的值
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
print(df)
print("----------Selecting on a multi-axis by label:--------------")
print(df.loc[:,['A','B']])

输出结果为:

                   A         B         C         D
2013-01-01  1.595626 -0.564944 -0.668520  0.809201
2013-01-02  0.151399  0.647508 -1.653127 -1.161560
2013-01-03 -0.530367  0.024272  0.799212 -1.079254
2013-01-04  1.060353  0.047422  1.886798  0.254401
2013-01-05  0.064728 -1.073669 -1.503000 -1.328167
2013-01-06  2.126969 -0.535444  0.078469  1.392002
----------Selecting on a multi-axis by label:--------------
                   A         B
2013-01-01  1.595626 -0.564944
2013-01-02  0.151399  0.647508
2013-01-03 -0.530367  0.024272
2013-01-04  1.060353  0.047422
2013-01-05  0.064728 -1.073669
2013-01-06  2.126969 -0.535444

再如:

import numpy as np
import pandas as pd

# 通过设置开始时间,并设置间隔了多少月
dates = pd.date_range('20130101',periods=6)

# 随机生成一个6行4列的值
# print(np.random.randn(6,4))

# 设置dates为行,ABCD为列的标题值,np.random.randn(6, 4)为行和列中的值
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
print(df)
print("----------Showing label slicing, both endpoints are included:--------------")
print(df.loc['20130102':'20130104', ['A', 'B']] )

print("----------Reduction in the dimensions of the returned object:--------------")
print(df.loc['20130102', ['A', 'B']])

print("----------For getting a scalar value:--------------")
print(df.loc[dates[0],'A'])

print("----------For getting fast access to a scalar (equivalent to the prior method):--------------")
print(df.at[dates[0],'A'])

输出结果为:

                   A         B         C         D
2013-01-01  0.417995 -0.026418 -1.027092 -0.042631
2013-01-02  0.184714  1.289753  2.064584 -2.566320
2013-01-03  0.155585 -0.043835 -0.204965 -0.502541
2013-01-04 -1.698213  0.914601 -0.576331 -0.722310
2013-01-05  0.023068  2.280261  2.014296 -1.111354
2013-01-06  0.456681  0.202428  0.612209 -0.525896
----------Showing label slicing, both endpoints are included:--------------
                   A         B
2013-01-02  0.184714  1.289753
2013-01-03  0.155585 -0.043835
2013-01-04 -1.698213  0.914601
----------Reduction in the dimensions of the returned object:--------------
A    0.184714
B    1.289753
Name: 2013-01-02 00:00:00, dtype: float64
----------For getting a scalar value:--------------
0.4179945574941799
----------For getting fast access to a scalar (equivalent to the prior method):--------------
0.4179945574941799

通过指定位置获取具体的值 iloc iat

import numpy as np
import pandas as pd

# 通过设置开始时间,并设置间隔了多少月
dates = pd.date_range('20130101',periods=6)

# 随机生成一个6行4列的值
# print(np.random.randn(6,4))

# 设置dates为行,ABCD为列的标题值,np.random.randn(6, 4)为行和列中的值
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
print(df)
print("----------Select via the position of the passed integers:----------")
print(df.iloc[3])

print("----------By integer slices, acting similar to numpy/python:----------")
print(df.iloc[3:5,0:2])

print("----------By lists of integer position locations, similar to the numpy/python style:----------")
print(df.iloc[[1,2,4],[0,2]])

print("----------For slicing rows explicitly:----------")
print(df.iloc[1:3,:])

print("----------For getting a value explicitly:----------")
print(df.iloc[1,1])

print("----------For getting fast access to a scalar (equivalent to the prior method)::----------")
print(df.iat[1, 1])

输出结果为:

                   A         B         C         D
2013-01-01  0.156959 -0.026162 -0.687972 -0.631711
2013-01-02 -0.331658  0.069760  0.820701  1.330417
2013-01-03 -0.842929  0.240588  1.073343  1.231400
2013-01-04 -0.433373  1.680165 -1.624269 -0.568833
2013-01-05 -0.023643  0.766268  0.210271 -0.107263
2013-01-06  0.856357  0.932945 -1.367324  0.766313
----------Select via the position of the passed integers:----------
A   -0.433373
B    1.680165
C   -1.624269
D   -0.568833
Name: 2013-01-04 00:00:00, dtype: float64
----------By integer slices, acting similar to numpy/python:----------
                   A         B
2013-01-04 -0.433373  1.680165
2013-01-05 -0.023643  0.766268
----------By lists of integer position locations, similar to the numpy/python style:----------
                   A         C
2013-01-02 -0.331658  0.820701
2013-01-03 -0.842929  1.073343
2013-01-05 -0.023643  0.210271
----------For slicing rows explicitly:----------
                   A         B         C         D
2013-01-02 -0.331658  0.069760  0.820701  1.330417
2013-01-03 -0.842929  0.240588  1.073343  1.231400
----------For getting a value explicitly:----------
0.06976023059625595
----------For getting fast access to a scalar (equivalent to the prior method)::----------
0.06976023059625595

你可能感兴趣的:(#,Pandas(数据分析库))