学长给的代码,感觉结构清晰,还是蛮不错的,想以后就照着这样的结构走好了,记录一下。
首先配置环境
matplotlib==3.4.2
numpy==1.20.3
pandas==1.3.0
sklearn==0.0
spacy==3.1.2
torch==1.8.0
TorchSnooper==0.8
tqdm==4.61.0
也不一定要完全一样,到时候哪里报错就改哪里就好了
数据集
https://download.csdn.net/download/qq_52785473/79483740
上传到资源里,设置的是0积分下载
下载之后创建一个datasets文件夹解压到里面就好了,或者改改代码也行。
首先创建配置文件config.py
class my_config():
max_length = 20 # 每句话截断长度
batch_size = 64 # 一个batch的大小
embedding_size = 256 # 词向量大小
hidden_size = 128 # 隐藏层大小
num_layers = 2 # 网络层数
dropout = 0.5 # 遗忘程度
output_size = 2 # 输出大小
lr = 0.001 # 学习率
epoch = 5 # 训练次数
再创建dataset.py
import pandas as pd
import os
import torchtext
from tqdm import tqdm
class mydata(object):
def __init__(self):
self.data_dir = './datasets'
self.n_class = 2
def _generator(self, filename): # 加载每行数据及其标签
path = os.path.join(self.data_dir, filename)
df = pd.read_csv(path, sep='\t', header=None)
for index, line in df.iterrows():
sentence = line[0]
label = line[1]
yield sentence, label
def load_train_data(self): # 加载数据
return self._generator('train.tsv')
def load_dev_data(self):
return self._generator('dev.tsv')
def load_test_data(self):
return self._generator('test.tsv')
class Dataset(object):
def __init__(self, dataset: mydata, config):
self.dataset = dataset
self.config = config # 配置文件
def load_data(self):
tokenizer = lambda sentence: [x for x in sentence.split() if x != ' '] # 以空格切词
# 定义field
TEXT = torchtext.data.Field(sequential=True, tokenize=tokenizer, lower=True, fix_length=self.config.max_length)
LABEL = torchtext.data.Field(sequential=False, use_vocab=False)
# text, label能取出example对应的数据
# 相当于定义了一种数据类型吧
datafield = [("text", TEXT), ("label", LABEL)]
# 加载数据
train_gen = self.dataset.load_train_data()
dev_gen = self.dataset.load_dev_data()
test_gen = self.dataset.load_test_data()
# 转换数据为example对象(数据+标签)
train_example = [torchtext.data.Example.fromlist(it, datafield) for it in tqdm(train_gen)]
dev_example = [torchtext.data.Example.fromlist(it, datafield) for it in tqdm(dev_gen)]
test_example = [torchtext.data.Example.fromlist(it, datafield) for it in tqdm(test_gen)]
# 转换成dataset
train_data = torchtext.data.Dataset(train_example, datafield) # example, field传入
dev_data = torchtext.data.Dataset(dev_example, datafield)
test_data = torchtext.data.Dataset(test_example, datafield)
# 训练集创建字典,默认添加两个特殊字符和
TEXT.build_vocab(train_data)
# 获取字典大小
self.vocab = TEXT.vocab
# 放入迭代器并打包成batch及按元素个数排序,到时候直接调用即可
self.train_iterator = torchtext.data.BucketIterator(
(train_data),
batch_size=self.config.batch_size,
sort_key=lambda x: len(x.text),
shuffle=False
)
self.dev_iterator, self.test_iterator = torchtext.data.BucketIterator.splits(
(dev_data, test_data),
batch_size=self.config.batch_size,
sort_key=lambda x: len(x.text),
repeat=False
)
print(f"load {len(train_data)} training examples")
print(f"load {len(dev_data)} dev examples")
print(f"load {len(test_data)} test examples")
再创建model.py
import torch
import torch.nn as nn
from config import my_config
class myLSTM(nn.Module):
def __init__(self, vocab_size, config: my_config):
super(myLSTM, self).__init__() # 初始化
self.vocab_size = vocab_size
self.config = config
self.embeddings = nn.Embedding(vocab_size, self.config.embedding_size) # 配置嵌入层,计算出词向量
self.lstm = nn.LSTM(
input_size=self.config.embedding_size, # 输入大小为转化后的词向量
hidden_size=self.config.hidden_size, # 隐藏层大小
num_layers=self.config.num_layers, # 堆叠层数,有几层隐藏层就有几层
dropout=self.config.dropout, # 遗忘门参数
bidirectional=True # 双向LSTM
)
self.dropout = nn.Dropout(self.config.dropout)
self.fc = nn.Linear(
self.config.num_layers * self.config.hidden_size * 2, # 因为双向所有要*2
self.config.output_size
)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
embedded = self.embeddings(x)
lstm_out, (h_n, c_n) = self.lstm(embedded)
feature = self.dropout(h_n)
# 这里将所有隐藏层进行拼接来得出输出结果,没有使用模型的输出
feature_map = torch.cat([feature[i, :, :] for i in range(feature.shape[0])], dim=-1)
out = self.fc(feature_map)
return self.softmax(out)
最后创建training.py
from dataset import mydata, Dataset
from model import myLSTM
from config import my_config
import torch
import torch.nn as nn
import numpy as np
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
def run_epoch(model, train_iterator, dev_iterator, optimzer, loss_fn): # 训练模型
'''
:param model:模型
:param train_iterator:训练数据的迭代器
:param dev_iterator: 验证数据的迭代器
:param optimzer: 优化器
:param loss_fn: 损失函数
'''
losses = []
for i, batch in enumerate(train_iterator):
if torch.cuda.is_available():
input = batch.text.cuda()
label = batch.label.type(torch.cuda.LongTensor)
else:
input = batch.text
label = batch.label
pred = model(input) # 预测
loss = loss_fn(pred, label) # 计算损失值
loss.backward() # 误差反向传播
losses.append(loss.data.numpy()) # 记录误差
optimzer.step() # 优化一次
# if i % 30 == 0: # 训练30个batch后查看损失值和准确率
# avg_train_loss = np.mean(losses)
# print(f'iter:{i + 1},avg_train_loss:{avg_train_loss:.4f}')
# losses = []
# val_acc = evaluate_model(model, dev_iterator)
# print('val_acc:{:.4f}'.format(val_acc))
# model.train()
def evaluate_model(model, dev_iterator): # 评价模型
'''
:param model:模型
:param dev_iterator:待评价的数据
:return:评价(准确率)
'''
all_pred = []
all_y = []
for i, batch in enumerate(dev_iterator):
if torch.cuda.is_available():
input = batch.text.cuda()
label = batch.label.type(torch.cuda.LongTensor)
else:
input = batch.text
label = batch.label
y_pred = model(input) # 预测
predicted = torch.max(y_pred.cpu().data, 1)[1] # 选择概率最大作为当前数据预测结果
all_pred.extend(predicted.numpy())
all_y.extend(label.numpy())
score = accuracy_score(all_y, np.array(all_pred).flatten()) # 计算准确率
return score
if __name__ == '__main__':
config = my_config() # 配置对象实例化
data_class = mydata() # 数据类实例化
config.output_size = data_class.n_class
dataset = Dataset(data_class, config) # 数据预处理实例化
dataset.load_data() # 进行数据预处理
train_iterator = dataset.train_iterator # 得到处理好的数据迭代器
dev_iterator = dataset.dev_iterator
test_iterator = dataset.test_iterator
vocab_size = len(dataset.vocab) # 字典大小
# 初始化模型
model = myLSTM(vocab_size, config)
optimzer = torch.optim.Adam(model.parameters(), lr=config.lr) # 优化器
loss_fn = nn.CrossEntropyLoss() # 交叉熵损失函数
y = []
for i in range(config.epoch):
print(f'epoch:{i + 1}')
run_epoch(model, train_iterator, dev_iterator, optimzer, loss_fn)
# 训练一次后评估一下模型
train_acc = evaluate_model(model, train_iterator)
dev_acc = evaluate_model(model, dev_iterator)
test_acc = evaluate_model(model, test_iterator)
print('#' * 20)
print('train_acc:{:.4f}'.format(train_acc))
print('dev_acc:{:.4f}'.format(dev_acc))
print('test_acc:{:.4f}'.format(test_acc))
y.append(test_acc)
# 训练完画图
x = [i for i in range(len(y))]
fig = plt.figure()
plt.plot(x, y)
plt.show()
最后运行training就可以跑模型了。
至于模型的保存和之后的调用
可以参考关于pytorch模型保存与调用的一种方法及一些坑。
稍微改改就好了。