- 在Blender中给SP分纹理组
CG星空
SubstancePainterSP材质
在Blender中怎么分SP的纹理组/纹理集其实纹理组就是材质把同一组的材质分给同一组的模型导入到sp里面自然就是同一个纹理组把模型导入SP之后就自动分好了
- MySQL存储结构
胖虎是只mao
MySQL数据库mysql哈希表数组二叉树
背景:为什么数据库存储使用b+树而不是二叉树,因为二叉树树高过高,每次查询都需要访问过多节点,即访问数据块过多,而从磁盘随机读取数据块过于耗时。1.表存储结构单位:表>段>区>页>行在数据库中,不论读一行,还是读多行,都是将这些行所在的页进行加载。也就是说存储空间的基本单位是页。一个页就是一棵树B+树的节点,数据库I/O操作的最小单位是页,与数据库相关的内容都会存储在页的结构里。2.B+树索引结构
- 小甲鱼零基础入门python教程视频_小甲鱼零基础入门学习python 共96集(含源码+课件+课后习题) 百度云盘...
weixin_39725154
【Python教程】小甲鱼零基础入门学习python共96集(含源码+课件+课后习题)小甲鱼零基础入门学习python共96集(含源码+课件+课后习题)百度云盘下载链接1:http://pan.baidu.com/s/1i5eR1fZ密码:8juz??解压密码:www.zygx8.com小甲鱼零基础入门学习Python视频(无课件)http://pan.baidu.com/s/1eRANzPK小甲
- T31ZL 君正SOC芯片 应用于移动摄像机、安全监控、视频通话和视频分析等领域 提供软硬件资料+样品测试
li15817260414
君正音视频智能路由器信号处理信息与通信
核心计算架构T31ZL搭载XBurst®-1双发射RISC-V核心,采用9级流水线微架构设计,主频稳定运行于1.5GHz14。处理器集成32KB指令缓存与32KB数据缓存构成一级缓存体系,搭配128KB二级统一缓存,有效提升指令吞吐效率26。硬件加速单元包含IEEE754兼容的浮点运算器,支持单/双精度浮点运算,实测SPECint2000基准测试成绩达2.4DMIPS/MHz5。指令集扩展芯片引入
- 华为OD机试 - 没有回文串(Python/JS/C/C++ 2024 E卷 100分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述回文串Q的定义:正读和反读都一样的字符串。
- NL2SQL技术方案系列(5):金融领域NL2SQL技术方案以及行业案例实战讲解3--非LLM技术方案
汀、人工智能
LLM工业级落地实践prompt人工智能大语言模型NL2SQLText2SQL
NL2SQL技术方案系列(5):金融领域NL2SQL技术方案以及行业案例实战讲解3NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理NL2SQL进阶系列(1):DB-GPT-Hub、SQLco
- NL2SQL技术方案系列(1):NL2API、NL2SQL技术路径选择;LLM选型与Prompt工程技巧,揭秘项目落地优化之道
汀、人工智能
LLM工业级落地实践prompt人工智能大语言模型NL2SQLText2SQLAI大模型自然语言处理
NL2SQL技术方案系列(1):NL2API、NL2SQL技术路径选择;LLM选型与Prompt工程技巧,揭秘项目落地优化之道NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理NL2SQL进阶
- NL2SQL进阶系列(2):DAIL-SQL、DB-GPT开源应用实践详解[Text2SQL]
汀、人工智能
LLM工业级落地实践gpt人工智能深度学习大语言模型sqlNL2SQLText2SQL
NL2SQL进阶系列(2):DAIL-SQL、DB-GPT开源应用实践详解[Text2SQL]NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理NL2SQL任务的目标是将用户对某个数据库的自然
- R语言获取数据——手工输入数据
蜗牛数据分析
R语言从入门到实战r语言开发语言
在R语言中获取数据集的方法有多种,例如读取Excel文件、数据库中的文件,而当我们没有这些渠道能够获取到数据集时,也可以手工输入数据,即通过键盘输入数据,它是获取数据集的最简单方法。另外,还可以在代码中直接输入数据,下面分别进行介绍。数据编辑器R提供了内置的数据编辑器,通过edit()函数调用该编辑器就可以实现手工输入数据。举例1:通过数据编辑器创建学生成绩表下面实现“学生成绩表”,具体步骤如下:
- MYSQL事务(14)
我爱Jack
mysql数据库
事务隔离级别的通俗解释:多人协作时的数据可见性规则一、为什么要用隔离级别?类比:多人同时编辑同一份文档(如在线表格)。如果没有规则,你会看到别人未保存的草稿(脏数据),或者自己的操作被覆盖。隔离级别的作用:定义不同用户操作数据的“可见范围”,平衡安全性与性能。二、四种隔离级别及问题隔离级别脏读不可重复读幻读性能对比典型问题场景读未提交可能可能可能⚡️最高用户A看到用户B未提交的订单取消,但B最终回
- 基于YOLOv5深度学习的田间杂草检测系统:UI界面 + YOLOv5 + 数据集详细教程
深度学习&目标检测实战项目
YOLO深度学习uiYOLOv5人工智能计算机视觉
引言随着农业科技的进步,智能化农业越来越受到重视,尤其是通过计算机视觉技术对作物进行监测和管理。在农业生产中,杂草的生长对作物的生长产生了负面影响,因此准确地检测和识别田间杂草至关重要。本文将详细介绍如何构建一个基于深度学习的田间杂草检测系统,使用YOLOv5模型进行目标检测,并提供一个用户友好的界面。我们将分步骤进行,包括环境配置、数据集准备、模型训练、实时杂草检测系统的实现等内容。目录引言目录
- 自动扶梯人员摔倒掉落识别检测数据集VOC+YOLO格式5375张2类别
FL1623863129
YOLO深度学习机器学习
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):5375标注数量(xml文件个数):5375标注数量(txt文件个数):5375标注类别数:2标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["anomaly",
- centos基础知识
铁锅与大鹅
php数据库开发语言
系统监控proc文件系统proc文件系统是一种无存储的文件系统,当读其中的文件时,其内容动态生成,当写文件时,文件所关联的写函数被调用。内核部件可以通过该文件系统向用户空间提供接口来提供查询信息、修改软件行为,因而它是一种比较重要的特殊文件系统。大致包含了如下信息:内存管理每个进程的相关信息文件系统设备驱动程序系统总线电源管理终端系统控制参数网络和整个Linux系统相关的参数如下:/proc/cm
- 机器学习|决策树|Gini指数和熵的区别|简单示例
漂亮_大男孩
机器学习决策树人工智能
如是我闻:在决策树模型中,Gini指数和熵(Entropy)是用来计算节点纯度的两种方法。它们都是评估分裂点的好坏,以选择最佳的属性来分裂。让我们先来了解一下这两种方法的定义,然后通过一个简单的例子来讨论它们之间的区别。Gini指数Gini指数是一个衡量数据分布不均匀程度的指标。在决策树中,它用于评估数据集的不纯度。Gini指数越低,数据的纯度越高。其计算公式为:Gini=1−∑i=1npi2Gi
- Hive JDBC 大数据查询场景下的 Socket 读超时问题及实战解决方案
窝窝和牛牛
大数据hivehadoop
文章目录HiveJDBC大数据查询场景下的Socket读超时问题及实战解决方案问题背景️解决方案方案一:通过JDBCURL直接配置超时(推荐)方案二:动态设置全局loginTimeout(兼容旧版本)总结与建议HiveJDBC大数据查询场景下的Socket读超时问题及实战解决方案问题背景在使用HiveJDBC执行查询时,偶发SocketTimeoutException异常,堆栈显示在ResultS
- 阿里云CTO:通义稳居全球最强开源大模型,性能接近GPT-4o
首席数智官
人工智能阿里云云计算
来源:@首席数智官9月19日,在2024杭州云栖大会上,阿里云CTO周靖人表示,阿里云正在围绕AI时代,树立一个AI基础设施的新标准,全面升级从服务器到计算、存储、网络、数据处理、模型训练和推理平台的技术架构体系,让数据中心成为一台超级计算机,为每个AI和应用提供高性能、高效的算力服务。大会现场,通义大模型迎来了年度重磅发布。基础模型升级,性能媲美GPT-4o,发布最强开源模型Qwen2.5系列,
- 分布式锁—Redisson的读写锁
液态不合群
分布式junit
1.Redisson读写锁RedissonReadWriteLock概述(1)RedissonReadWriteLock的简介RedissonReadWriteLock提供了两个方法分别获取读锁和写锁。RedissonReadWriteLock的readLock()方法可以获取读锁RedissonReadLock。RedissonReadWriteLock的writeLock()方法可以获取写锁R
- Apache Flink详解:流处理与批处理的强大框架
微笑听雨。
大数据apacheflink大数据
ApacheFlink详解:流处理与批处理的强大框架ApacheFlink是一个开源的流处理框架,旨在处理大规模数据流。Flink能够处理实时流数据和批处理数据,具有高吞吐量、低延迟、容错等特性。以下是对Flink的详细介绍:核心概念流与批处理:流处理(StreamProcessing):持续不断地处理实时生成的数据流。批处理(BatchProcessing):处理已经收集好的静态数据集。Data
- 如何通过卷积神经网络(CNN)有效地提取图像的局部特征,并在CIFAR-10数据集上实现高精度的分类?
浪九天
人工智能理论python后端深度学习神经网络人工智能机器学习pytorch
目录1.CNN提取图像局部特征的原理2.在CIFAR-10数据集上实现高精度分类的步骤2.1数据准备2.2构建CNN模型2.3定义损失函数和优化器2.4训练模型2.5测试模型3.提高分类精度的技巧卷积神经网络(ConvolutionalNeuralNetwork,CNN)是专门为处理具有网格结构数据(如图像)而设计的深度学习模型,能够有效地提取图像的局部特征。下面将详细介绍如何通过CNN提取图像局
- Spring AI 实战:手把手教你打造一个智能客服机器人!
Leaton Lee
spring人工智能机器人
前言:为什么要做一个智能客服机器人?在当今数字化时代,智能客服机器人已经成为企业提升用户体验和服务效率的重要工具。无论是解答用户问题、处理订单咨询,还是提供技术支持,智能客服机器人都能够高效地完成任务。SpringAI框架为我们提供了一个强大的工具集,结合自然语言处理(NLP)技术,我们可以轻松地构建一个功能强大的智能客服机器人。本文将从零开始,一步步教你如何利用SpringAI和相关技术打造一个
- CISC架构
搞芯片的小呆鸟
计算机基础学习架构
基本概念CISC架构是一种计算机处理器设计架构,其设计理念与RISC架构相对。CISC架构强调通过使用大量功能复杂的指令来增强计算机的处理能力,试图让计算机用一条指令就能完成较为复杂的操作,以减少程序中指令的总数,提高程序的执行效率。特点指令集复杂:CISC架构的指令集包含大量不同功能的指令,指令数量通常较多,可能有几百条甚至更多。例如,英特尔的x86架构就是典型的CISC架构,它拥有丰富的指令,
- 计算机架构简介
搞芯片的小呆鸟
计算机基础学习架构
以下是对RISC-V架构、X86架构、ARM架构、MIPS架构、PowerPC架构、SPARC架构、IA-64架构、Power架构的介绍:RISC-V架构简介:RISC-V是基于精简指令集计算(RISC)原理建立的开放标准指令集架构(ISA),2010年诞生于加州大学伯克利分校。其指令集简单且高度可定制,任何人都可免费使用、修改和扩展。特点:具有开源免费、可扩展性强、指令集简洁等特点。用户能根据自
- 第37篇Personalized Federated Learning: A Meta-Learning Approach(perfedavg联邦学习+元学习)2020个性化联邦学习使用Hessian
还不秃顶的计科生
联邦学习学习
第一部分:解决的问题联邦学习(FL)在多用户协同训练模型时,因数据隐私和通信限制,用户仅与中央服务器交互。传统FL方法得到的全局模型无法适应各用户的异质数据,导致在用户本地数据集上性能不佳因此这篇论文旨在解决联邦学习中模型缺乏个性化的问题第二部分:idea基于模型无关元学习(MAML)框架,提出个性化联邦学习问题的新公式。通过寻找一个初始共享模型,让用户基于自身数据执行少量梯度下降步骤就能快速适应
- Nacos 深度解析与实战指南:构建云原生微服务的核心枢纽
小小初霁
云原生微服务架构
1.Nacos简介Nacos(DynamicNamingandConfigurationService)是阿里巴巴开源的云原生平台核心组件,集服务发现、配置管理、动态DNS和服务元数据管理于一体,支持Kubernetes、SpringCloud、Dubbo等主流生态。其核心理念是帮助开发者快速构建弹性可扩展、高可用的微服务架构。核心优势:一站式解决方案:同时管理服务与配置,降低组件维护成本。多环境
- 工业级Pandas性能优化:Dask/Modin实战教程
闲人编程
Python数据分析实战精要pandas性能优化分布式GPU加速DaskModin数据分析
目录工业级Pandas性能优化:Dask/Modin实战教程1.引言与背景1.1Pandas的局限性1.2分布式计算与GPU加速的需求1.3Dask与Modin简介2.数据集介绍3.工业级数据处理理论基础3.1内存优化3.2计算并行化3.3GPU加速4.实验环境与依赖库5.数据处理与分析流程6.Dask实战:分布式计算与GPU加速7.Modin实战:简洁易用的并行Pandas接口8.数据分析领域的
- 机器学习——使用分类特征的一种独热编码,
小卷心菜.
机器学习人工智能
在我们目前看到的例子中,每个特性只能具有两个可能的值中的一个,耳朵形状不是尖的就是软的,脸型不是圆就是不圆,胡须不是存在就是不存在,但是如果特性可以具有两个以上的离散值呢?如何使用一个热编码来解决这样的特性?下图是我们宠物收养中心申请的新培训集,所有的数据都是一样的,除了耳形特征有尖软之外还有椭圆形,所以这个特征仍然是一个分类值特征,但它可以有三个可能的值,而不仅仅是两个可能的值,这意味着当你在这
- RMAN备份数据库_使用RMAN备份归档redo日志
数语数行
Oracle备份与恢复Oracle数据库archivelogrmanbackup归档日志
归档redo日志是成功进行介质恢复的关键,应该定期备份它们。本节主要是介绍非CDB(noncontainerdatabase)也即是非容器数据库的归档redo日志备份。容器数据库的归档redo日志备份请参考官方手册。1.关于非CDB的归档redo日志备份RMAN备份的几个特性是归档redo日志特有的。例如,可以使用BACKUP…DELETE在备份到备份集之后从磁盘中删除一个或所有归档redo日志拷
- PCB 目标检测数据集
晨兆
目标检测
###**PCB目标检测数据集介绍****关键词**:工业质检、PCB缺陷检测、目标定位、智能制造---####**数据集概览**本数据集聚焦**印刷电路板(PCB)缺陷检测**任务,专为工业质检场景设计,提供高精度标注的PCB图像及缺陷目标信息,支持目标检测、缺陷分类、自动化质检等研究方向。---####**核心特性**1.**丰富的缺陷类别**包含多种PCB缺陷类型,如:-**missing_
- Agentic Security:开源LLM漏洞扫描器
袁立春Spencer
AgenticSecurity:开源LLM漏洞扫描器项目地址:https://gitcode.com/gh_mirrors/ag/agentic_security项目介绍AgenticSecurity是一款开源的大型语言模型(LLM)漏洞扫描器,旨在帮助开发者和安全专家识别和修复LLM中的潜在安全风险。通过集成多种攻击技术和数据集,AgenticSecurity能够对LLM进行全面的模糊测试和压力
- 机器学习与深度学习里生成模型和判别模型的理解
程序员羊羊
机器学习深度学习人工智能php学习chatgpt前端
两个模型是啥我们从几句话进入这两个概念:1、机器学习分为有监督的机器学习和无监督的机器学习;2、有监督的机器学习就是已知训练集数据的类别情况来训练分类器,无监督的机器学习就是不知道训练集的类别情况来训练分类器;3、所以说,有监督的机器学习可以抽象为一个分类task,而无监督的基本完成的是聚类;4、有监督的机器学习中,我们可以概述为通过很多有标记的数据,训练出一个模型,然后利用这个,对输入的X进行预
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc