如何使用Google Object Detection API

1.安装所需的库文件:

pip install tensorflow(tensorflow的安装和验证可参考:https://www.tensorflow.org/install/)

pip install pillow

pip install lxml

pip install jupyter

pip install matplotlib

2.安装protocbuf:

进入https://github.com/google/protobuf/releases

下载编译好的zip包:


下载后bin目录下会有一个protoc二进制文件,覆盖到对应目录:cp bin/protoc /usr/local/bin/protoc

3.下载modesl放置于tensorflow文件夹下:

/usr/local/lib/python3.6/site-packages/tensorflow/models

4.在tensorflow/models/research/文件夹下运行:

protoc object_detection/protos/*.proto --python_out=.

5.在tensorflow/models/research文件夹下运行:(注:每次打开新的终端都要运行,否则可能出现找不到modual报错,也可以用命令:echo export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim>>~/.bashrc,写入.bashrc,这样每次打开新的终端会自动加载这句命令)

export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

6.测试安装,出现OK则没问题:

python object_detection/builders/model_builder_test.py

7.~/object_detection/文件夹下运行:jupyter-notebook

8.点击object_detection_tutorial.ipynb,等待一段时间可看到demo

9.该API能识别的模型有限,可通过如下做迁移学习,识别更多的物体:

https://pythonprogramming.net/custom-objects-tracking-tensorflow-object-detection-api-tutorial/?completed=/video-tensorflow-object-detection-api-tutorial/

你可能感兴趣的:(如何使用Google Object Detection API)