AI:大力出奇迹?Bigger is better?AI下一代浪潮?—人工智能的大语言模型(LLMs)的简介、发展以及未来趋势

AI:大力出奇迹?Bigger is better?AI下一代浪潮?—人工智能的大语言模型(LLMs)的简介、发展以及未来趋势

目录

人工智能的大语言模型(LLMs)—AI下一代浪潮?Bigger is better?大力出奇迹?

2017年以来,大规模语言模型发展史

单体模型VS混合模型

大模型的意义

大模型的局限性

大模型的四个障碍

未来趋势


人工智能的大语言模型(LLMs)—AI下一代浪潮?Bigger is better?大力出奇迹?

          大型语言模型(LLMs)是在包含巨大数据量的大规模数据集上训练的。中国工程院院士王恩东表示:“人工智能如何发展出像人类具备逻辑、意识和推理的认知能力,是人工智能研究一直探索的方向。目前来看,通过大规模数据训练超大参数量的巨量模型,被认为是非常有希望实现通用人工智能的一个重要方向。”随着巨量模型的兴起,巨量化已成为未来人工智能发展非常重要的一个趋势。而巨量化的一个核心特征就是模型参数多训练数据量大
          2018 年谷歌发布BERT,从此,预训练模型(Pre-trained Models, PTMs)逐渐成为自然语言处理领域的主流。当然,预训练模型如今已经成为深度学习研究中的一种主流范式
          2020年,GPT-3 横空出世,这个具有 1750 亿参数规模的预训练模型所表现出来的零样本与小样本学习能力刷新了人们的认知。作为一个语言生成模型,GPT-3 不仅能够生成流畅自然的文本,还能完成问答、翻译、创作小说等一系列 NLP 任务,甚至进行简单的算术运算,并且其性能在很多任务上都超越相关领域的专有模型,达到 SOTA 水平。从此,OpenAI开始引爆了 2021 年 AI 大模型研究的热潮,大模型成为几乎所有全球头部AI公司的追逐目标。

          在大模型的赛道上,算力公司、算法公司、数据公司,研究机构正在展开新一轮竞赛
          2021年,人工智能正式迈向“炼大模型”阶段,开展了超大规模预训练模型的“军备竞赛”,这一年,也被很多业界同行称为超大规模预训练模型的“爆发之年”。自去年 OpenAI 发布英文领域超大规模预训练语言模型 GPT-3 后,中文领域同类模型的训练进程备受关注。
          国内外AI头部公司,包括谷歌、微软、英伟达、智源人工智能研究院、阿里、百度、华为、腾讯、浪潮等国内外科技巨头和机构纷纷展开大模型研究和探索。近年来人工智能的发展,已经从“大炼模型”逐步迈向了“炼大模型”的阶段,通过设计先进的算法,整合尽可能多的数据,汇聚大量算力,集约化地训练大模型,供大量企业使用,这是必然趋势
          2021年1月,Google 推出的 Switch Transformer 模型以高达 1.6 万亿的参数量打破了 GPT-3 作为最大 AI 模型的统治地位,成为史上首个万亿级语言模型。
          2021年6月,北京智源人工智能研究院发布了超大规模智能模型“悟道 2.0”,达到1.75 万亿参数,超过 Switch Transformer 成为全球最大的预训练模型。
          随着处理能力和数据源的增长,深度学习中曾经的趋势已经成为一个原则:越大越好。近年来,语言模型的规模越来越大,只有像Google、Microsoft、NVIDIA等大公司才可以玩转千亿/万亿级的大模型,而且事实证明以大模型为基础探索通用智能的道路也远远没有到尽头,国内产业和学术界在对大模型的探索上也亦步亦趋,大规模的AI设备集群和通用性的软硬件生态协同越来越成为信息时代急需的基础设施,未来制约人工智能发展的不仅仅是对人才的竞争,大科学装置和对多场景应用的通用全栈式技术生态的不断发展进化,也越来越重要。

2017年以来,大规模语言模型发展史

AI:大力出奇迹?Bigger is better?AI下一代浪潮?—人工智能的大语言模型(LLMs)的简介、发展以及未来趋势_第1张图片

发布时间

大模型

参数量

训练数据

多模态

功能

机构

2017年 GPT-1 1.1亿 文本 OpenAI

2018年

10月

Bert 3.4亿 文本 Google

2019年

08月

GPT-2 15亿 文本 OpenAI

2019年

08月

MegatronLM 83亿 文本 NVIDIA
2020年01月 Turing-NLG 170 亿 文本 Microsoft
2020年05月 GPT-3 1750 亿 45TB 文本 NLU,文本生成 OpenAI
2021 年 01月 Switch Transformer 1.6万亿 Google
2021年03月

CPM-1

(悟道2.0,文源)

26亿 文本 NLU,文本生成 智源研究院

2021年04月

PLUG

270亿

>1.1TB high-quality

文本

NLU,文本生成

阿里

2021年04月

盘古-α

2000亿

1.1TB high-quality
80TB raw

文本

NLU,文本生成

华为&循环智能

2021年04月

孟子(BERT, T5,Oscar)

10亿

300GB

文本,图像

NLU,文本生成
图像生成文本

澜舟科技

2021年06月

M6

1000亿

1.9TB images
292GB texts

文本,图像

NLU,文本生成
图像生成文本文本生成图像

阿里

2021年06月

CPM-2

(悟道2.0)

CPM-MoE

总共1.75万亿

其中110亿中文模型

110亿中英模型

1980亿中英MoE模型

2.3TB Chinese
300GB English

文本

NLU,文本生成

智源研究院

2021年06月

CogView(悟道-文汇)

40亿

30 million high-quality (Chinese) text-image pairs

文本,图像

文本生成图像
图像生成文本

智源研究院

2021年07月

ERNIE3.0

100亿

4TB text and KG

文本

NLU,文本生成

百度

2021年09月

源1.0

2457亿

5TB high-quality

文本

NLU,文本生成

浪潮

2021年10月 Megatron Turing-NLG
威震天-图灵
5300亿

文本

NLU

Microsoft+NVIDIA

2021年10月

神农

10亿

数百GB

文本

NLU,文本生成

腾讯

:该表将持续更新

单体模型VS混合模型

          现在业界提高模型参数量有两种技术路线,产生两种不同的模型结构,一种是单体模型,一种是混合模型。如华为的盘古大模型、百度的文心大模型、英伟达联合微软发布的自然语言生成模型 MT-NLG 、浪潮的源大模型等走的都是单体模型路线;而智源的悟道模型、阿里 M6 等走的是混合模型路线。

大模型的意义

  • 大模型被大多数专家认为是走向AGI的重要途径之一。超大规模预训练模型是从弱人工智能向通用人工智能的突破性探索,解决了传统深度学习的应用碎片化难题,引发科研机构和企业重点投入。
  • 大模型可以吸收海量知识,从里面提高模型的泛化能力,可以减少对领域数据标注的依赖。
  • 超大规模预训练模型在海量通用数据上进行预先学习和训练,能有效缓解AI领域通用数据的激增与专用数据匮乏的矛盾,具备通用智能的雏形。
  • 预训练大模型普适性强,可满足垂直行业的共性需求。预训练大模型迁移性好,可满足典型产品的技术要求。GPT-3凸显了一种小样本学习以及泛化能力,而且两个层面的能力都非常优秀。
  • 大模型承上启下,深刻影响底层技术和上层应用的发展;向下驱动数据技术和计算架构能力的提升,支撑模型训练、部署和优化,向上支撑上层应用的服务转型。
  • 模型的参数规模越大,优势越明显

大模型的局限性

资本门槛:大模型的训练,以GPT-3为例,训练一次的成本是1200万美金;
技术门槛:AI框架的深度优化和并行能力要求很高。
跨领域门槛:大模型多方向问题亟待解决,生态建设不容小觑。未来预训练大模型将重点解决应用、可信、跨学科合作、资源不平衡和开放共享等问题。

大模型的四个障碍

Andrew NG 认为,构建越来越大的模型的努力带来了自己的挑战。庞大模型的开发人员必须克服四个巨大的障碍。

  • 数据:大型模型需要大量数据,但网络和数字图书馆等大型来源可能缺乏高质量数据。例如,研究人员发现 BookCorpus 是一个包含 11,000 本电子书的集合,已被用于训练 30 多个大型语言模型,可能会传播对某些宗教的偏见,因为它缺乏讨论基督教和伊斯兰教以外信仰的文本。 AI 社区越来越意识到数据质量至关重要,但尚未就编译大规模、高质量数据集的有效方法达成共识。
  • 速度:今天的硬件难以处理庞大的模型,当位反复进出内存时,这些模型可能会陷入困境。为了减少延迟,Switch Transformer 背后的 Google 团队开发了一种方法,可以为每个令牌处理模型层的选定子集。他们最好的模型的预测速度比参数数量只有其 1/30 的模型快 66%。同时,微软开发了 DeepSpeed 库,它并行处理数据、单个层和层组,并通过在 CPU 和 GPU 之间划分任务来减少冗余处理。
  • 能源:训练如此庞大的网络会消耗大量的电能。 2019 年的一项研究发现,使用化石燃料,在 8 个 Nvidia P100 GPU 上训练一个 2 亿参数的变压器模型,在五年的驾驶过程中排放的二氧化碳几乎与一辆普通汽车一样多。新一代有望加速人工智能的芯片,如 Cerebras 的 WSE-2 和谷歌最新的 TPU,可能有助于减少排放,同时风能、太阳能和其他清洁能源增加以满足需求。
  • 交付:这些庞大的模型太大而无法在消费者或边缘设备上运行,因此大规模部署它们需要互联网访问(较慢)或精简实施(能力较弱)。

未来趋势

         清华大学教授、智源大模型技术委员会成员刘知远说: “大规模预训练模型是人工智能的最新技术高地,是对海量数据、高性能计算和学习理论原始创新的全方位考验”。
          大小模型协同进化。大模型参数竞赛,在未来某个时刻,会进入冷静期,大小模型将在云边端协同进化。达摩院认为,因性能与能耗提升不成比例,受效率问题的限制,大模型参数竞赛将进入冷静期,大小模型云边端协同进化会是未来趋势。 大模型向边、端的小模型输出模型能力,小模型负责实际的推理与执行,同时小模型再向大模型反馈算法与执行成效,让大模型的能力持续强化,形成有机循环的智能体系。

相关文章
NLP之PLUG:阿里达摩院发布最大中文预训练语言模型PLUG的简介、架构组成、模型训练、使用方法之详细攻略_一个处女座的程序猿-CSDN博客

 
Top AI Stories of 2021: Transformers Take Over, Models Balloon, Multimodal AI Takes Off, Governments Crack Down - The Batch | DeepLearning.AI
AI中文大模型汇总 - 知乎

你可能感兴趣的:(NLP,AI,自然语言处理,深度学习,人工智能)