- 微算法科技的前沿探索:量子机器学习算法在视觉任务中的革新应用
MicroTech2025
量子计算算法
在信息技术飞速发展的今天,计算机视觉作为人工智能领域的重要分支,正逐步渗透到我们生活的方方面面。从自动驾驶到人脸识别,从医疗影像分析到安防监控,计算机视觉技术展现了巨大的应用潜力。然而,随着视觉任务复杂度的不断提升,传统机器学习算法在处理大规模、高维度数据时遇到了计算瓶颈。在此背景下,量子计算作为一种颠覆性的计算模式,以其独特的并行处理能力和指数级增长的计算空间,为解决这一难题提供了新的思路。微算
- NLP-D7-李宏毅机器学习---X-Attention&&GAN&BERT&GPT
甄小胖
机器学习自然语言处理机器学习bert
—0521今天4:30就起床了!真的是迫不及待想看新的课程!!!昨天做人脸识别系统的demo查资料的时候,发现一个北理的大四做cv的同学,差距好大!!!我也要努力呀!!不是比较,只是别人可以做到这个程度,我也一定可以!!!要向他学习!!!开始看课程啦!-----0753看完了各种attention,由于attention自己计算的限制,当N很大的时候会产生计算速度问题,从各种不同角度(人工知识输入
- Camera相机人脸识别系列专题分析之十六:人脸特征检测FFD算法之libcvface_api.so数据结构详细注释解析
一起搞IT吧
数码相机算法数据结构人工智能android图像处理计算机视觉
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:这一篇我们开始讲:Camera相机人脸识别系列专题分析之十六:人脸特征检测FFD算法之libcvface_api.so数据结构详细注释解析目录一、libcvface_api.so数据结构详细注释解析一、libcvface_api.so数据结构详细注释解析///@brief人脸信息结构体typedefstructcv_face_t{cv_r
- 基于STM32单片机的考勤打卡系统
文章目录一、系统概述二、项目内容和功能介绍三、效果图四、资料获取一、系统概述基于STM32单片机的考勤打卡系统介绍一、系统概述基于STM32单片机的考勤打卡系统是一种集数据采集、身份识别、记录存储与远程管理于一体的智能化考勤解决方案。该系统以STM32微控制器为核心,通过非接触式识别技术(如RFID、指纹、人脸识别)或传统输入方式(如按键、密码)快速采集员工考勤信息,结合实时时钟模块(RTC)记录
- Python深度学习:3步实现AI人脸识别,效果堪比专业软件!
小筱在线
python人工智能python深度学习
引言:AI人脸识别的时代已经到来在当今数字化时代,人脸识别技术已经从科幻电影走进了我们的日常生活。从手机解锁到机场安检,从银行身份验证到智能门禁系统,这项技术正以前所未有的速度改变着我们的生活方式。而令人振奋的是,借助Python和深度学习技术,普通人也能构建出专业级的人脸识别系统。本文将带领您通过三个关键步骤,使用Python深度学习技术实现一个准确率高达99%的人脸识别系统。这个系统不仅原理简
- 初始CNN(卷积神经网络)
超龄超能程序猿
机器学习cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)作为深度学习的重要分支,在图像识别、目标检测、语义分割等领域大放异彩。无论是手机上的人脸识别解锁,还是自动驾驶汽车对道路和行人的识别,背后都离不开CNN的强大能力一、CNN诞生的背景与意义在CNN出现之前,传统的图像识别方法主要依赖人工提取特征,例如使用SIFT(尺度不变特征变换)、HOG(方向梯度直方图)等算法。这些
- 使用 C++/OpenCV 和 MFCC 构建双重认证智能门禁系统
使用C++/OpenCV和MFCC构建双重认证智能门禁系统引言随着物联网和人工智能技术的发展,智能门禁系统在安防领域的应用越来越广泛。相比于传统的钥匙、门禁卡或密码,生物识别技术(如人脸识别、指纹识别、虹膜识别等)提供了更高的安全性与便利性。然而,单一的生物识别方式在某些场景下可能存在安全隐患。例如,人脸识别可能被高清照片或视频欺骗(称为“欺骗攻击”),在光照、姿态变化剧烈时识别率也可能下降。为了
- OpenCVforUnity人脸识别插件:Unity3D中的实时人脸检测解决方案
OpenCVforUnity人脸识别插件:Unity3D中的实时人脸检测解决方案【下载地址】OpenCVforUnity人脸识别插件OpenCVforUnity人脸识别插件专为Unity3D开发者设计,帮助轻松实现高效的人脸识别功能。该插件支持摄像头画面的实时检测,精准比对面部特征,适用于刷脸验证等交互场景。集成简单快捷,符合Unity开发习惯,同时具备良好的可扩展性,方便二次开发与功能定制。无论
- Python机器学习实战——逻辑回归(附完整代码和结果)
小白熊XBX
机器学习机器学习python逻辑回归
Python机器学习实战——逻辑回归(附完整代码和结果)关于作者作者:小白熊作者简介:精通c#、Halcon、Python、Matlab,擅长机器视觉、机器学习、深度学习、数字图像处理、工业检测识别定位、用户界面设计、目标检测、图像分类、姿态识别、人脸识别、语义分割、路径规划、智能优化算法、大数据分析、各类算法融合创新等等。联系邮箱:
[email protected]科研辅导、知识付费答疑、个性化定制
- 人脸识别接口&sdk,两张人脸相似度比对
人工智能时代,人脸识别技术正在被广泛应用于金融支付、安防监控、身份验证等多个领域,基于深度学习算法于海量样本训练,人脸识别接口以高精度、低延迟的特性出现在大众视野,成为开发者和企业用户集成人脸识别功能的首要选择之一。人脸识别接口技术服务原理:格式转换:支持BMP、JPG、PNG、TIF等多种常见图像格式;尺寸调整与压缩:建议图像大小控制在200KB左右,确保传输效率与识别质量;图像增强:自动旋转、
- 使用c++编写一段人脸识别眨眼检测的代码
语嫣凝冰
c++opencv计算机视觉图像处理开发语言
我可以给你一些大致的步骤:使用摄像头或图像文件获取视频帧。使用人脸检测算法检测视频帧中的人脸。对检测到的人脸进行眼睛检测。判断眼睛是否闭合,如果是则认为该人在眨眼。以下是一段使用OpenCV库编写的C代码示例:```#include#include#include#includeusingnamespacestd;usingnamespacecv;intmain(){//使用摄像头获取视频帧Vid
- AI Agent开发第81课-企业AI落地15大陷阱与破局之道
TGITCIC
AIAgent开发大全人工智能AI落地企业AI落地大模型落地企业大模型落地
1.技术至上:忽视业务融合1.1业务需求驱动的本质AI项目的核心价值在于解决业务痛点,而非技术炫技。某银行通过成熟的人脸识别技术将坏账率降低15%,其成功源于对业务场景的精准把握。技术选择必须基于业务需求的优先级排序,而非单纯追求算法复杂度。当零售企业用AI优化供应链时,其目标是提升库存周转率0.5个百分点,而非发表顶会论文。1.2技术与业务的错位某科技公司投入千万研发智能客服系统,最终因响应准确
- 树莓派上 基于Opencv 实现人脸检测与人脸识别
土拨鼠不是老鼠
C++opencv人工智能计算机视觉
一,需求基于树莓派4b,usb1080p摄像头,实现人脸检测与人脸识别。尝试了海陵科的模组和百度的sdk。海陵科的模组无法录入人脸,浪费了100多块钱。百度的sdk在树莓派上也无法录入人脸,官方解决不了。最后只能用opencv自己实现,因为只要实现最简单检测和识别就行,不在乎准确率。经测试opencv能满足基本要求,这里整理下思路。二,(1),加载模型并实例化Ptr和Ptr对象。树莓派4bopen
- 树莓派实验——人脸识别
Rounie
opencvpython计算机视觉
importnumpyasnp#导入numpy科学计算库importcv2#导入OpenCV函数库#装载人脸识别特征文件face_cascade=cv2.CascadeClassifier('/usr/local/lib/python3.5/dist-packages/cv2/data/haarcascade_frontalface_alt.xml')cap=cv2.VideoCapture(0)
- 3516cv610的aiisp效果
张海森_168820
音视频
3516cv610的aiisp效果1.图像增强(AI+ISP协同)亮点:动态范围提升(AIHDR):比纯ISP的线性HDR更自然,减少鬼影;智能降噪(AINR):在低照/夜间噪点压制更干净,纹理保留好;颜色还原:色彩更接近人眼感知,尤其在人脸区域处理更出色;AI自动曝光/白平衡:识别场景特征(如人脸、车牌)优先调整曝光区域,实际效果更“智能”;适用场景:人脸识别入口、夜视监控、强背光场景示例提升前
- 【EI会议征稿】东北大学主办第三届机器视觉、图像处理与影像技术国际会议(MVIPIT 2025)
诗远Yolanda
图像处理计算机视觉考研视频机器学习论文阅读
一、会议信息大会官网:www.mvipit.org官方邮箱:
[email protected]会议地点:辽宁沈阳主办单位:东北大学会议时间:2025年9月27日-9月29日二、征稿主题集中但不限于“机器视觉、图像处理与影像技术”等其他相关主题。机器视觉:视觉中的统计机器学习;立体视觉标定;几何建模与处理;人脸识别与手势识别;早期视觉和生物学启发的视觉;光流法和运动追踪;图像分割和图像分类;基于模型的视觉
- 人脸识别常用数据集和Loss
JL_Jessie
人脸识别深度学习
人脸识别数据集数据集的noise对训练效果的影响很大!很长一段时间MegaFace的效果都上不去,就是因为数据集噪声的原因。而且自己在训练人脸的时候,如果不对数据集的噪声和属性有一点了解,对训练结果可能会有误判,甚至越训练越差…在选择数据集的时候不要一味求大,有的时候选择一个noise比例极高的大数据集,效果还不如选择一个clean的小数据集呢,可以参见这篇论文TheDevilofFaceReco
- Python dlib(HOG+SVM)人脸识别总结
程序媛一枚~
人脸识别python支持向量机开发语言读书笔记人脸检测识别
Pythondlib(HOG+SVM)人脸识别总结面部标志检测dlib68点(HOG+SVM),194点人脸识别模型,包括口(外嘴唇,内嘴唇),鼻,眉毛(左右眉),眼睛(左右眼),下鄂5点面部标志检测器(左眼2点,右眼2点,鼻子1点)面部对齐更高效眨眼检测ear眨眼瞬间达到0疲劳驾驶检测—连续帧ear面部对齐眼睛连线反正切获取旋转角度,期望图像眼睛横长度计算比率左眼计算右眼相对坐标眼睛横中心点作为
- ubuntu系统的树莓派人脸识别视频(转载哔哩哔哩)
qq_39717490
ubuntu音视频linux
树莓派进阶玩法|人脸识别项目教程_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1uv4y1g7aB?spm_id_from=333.337.search-card.all.click&vd_source=f9b5cbd9734c647ef133bdde5c02cfd4,视频播放量34013、弹幕量29、点赞数690、投硬币枚数247、收藏人数1968
- 人脸识别算法赋能园区无人超市安防升级
智驱力人工智能
算法人工智能边缘计算人脸识别智慧园区智慧工地智慧煤矿
人脸识别算法赋能园区无人超市安防升级正文在园区无人超市的运营管理中,传统安防手段依赖人工巡检或基础监控设备,存在响应滞后、误报率高、环境适应性差等问题。本文从技术背景、实现路径、功能优势及应用场景四个维度,阐述如何通过人脸识别检测、人员入侵算法及疲劳检测算法的协同应用,构建高效、精准的智能安防体系。一、技术背景:视觉分析算法的核心支撑人脸识别算法基于深度学习的卷积神经网络(CNN)模型,通过提取面
- 基于OpenCV-python的人脸识别系统
transuperb
完整代码opencvpython人工智能
importsysimportosimporttkinterastkfromtkinter.ttkimportStyleimportnumpyasnpimportcv2fromPILimportImageTk,ImageDraw,ImageFontfrompanel.models.tabulatorimportthemefromModelimport*fromtkinterimportttk,fi
- 零基础学 OpenCV + Python 图像处理:手把手带你做人脸识别(附代码+典型案例)
猫头虎
#Python专栏opencvpython图像处理计算机视觉AIGCAI编程人工智能
零基础学OpenCV+Python图像处理:手把手带你做人脸识别(附代码+典型案例)关键词:opencv-python、opencv图像处理、opencv人脸识别代码python、python安装opencv库亮点提示:本文面向零基础读者,手把手教你从环境搭建到实战应用,一步步深入,让你快速掌握OpenCV+Python图像处理与人脸识别技术。文中附带完整示例代码与典型案例,可直接复制、运行与深度
- Camera相机人脸识别系列专题分析之十三:人脸特征检测FFD算法之libcvface_api.so人脸识别检测流程详解
一起搞IT吧
数码相机算法计算机视觉android人工智能图像处理
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:这一篇我们开始讲:Camera相机人脸识别系列专题分析之十三:人脸特征检测FFD算法之libcvface_api.so人脸识别检测流程详解目录一、背景二、:FFD算法libcvface_api.so人脸识别检测流程详解2.1:FFD初始化2.2:FFD人脸识别检测process2.3:setFdAlgoInfo2.4:FFD卸载
- Camera相机人脸识别系列专题分析之四:Camera相机领域人脸识别和人脸属性检测介绍
一起搞IT吧
人工智能计算机视觉图像处理android
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:Camera相机人脸识别系列专题分析之三:一张图片的人脸识别过程原理这一篇我们开始讲:Camera相机人脸识别系列专题分析之四:Camera相机领域人脸识别和人脸属性检测介绍目录一、背景二、:Camera相机领域人脸识别2.1:影像相关基础知识2.1.1pipeline简介2.1.2Raw阈图像处理2.2:Camera相机人脸识别2.3:
- Camera相机人脸识别系列专题分析之七:MTK ISP6S平台FDNode流程FdNodeImp.cpp调试手段及客制化dump,跳帧,开关,使能,异步控制等等
一起搞IT吧
数码相机人工智能图像处理android
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:Camera相机人脸识别系列专题分析之六:MTKISP6S平台人脸识别fdnode流程FdNodeImp.cpp详解这一篇我们开始讲:Camera相机人脸识别系列专题分析之七:MTKISP6S平台FDNode流程FdNodeImp.cpp调试手段及客制化dump,跳帧,开关,使能,异步控制等等目录一、背景二、:FDNode客制化2.1:F
- Camera相机人脸识别系列专题分析之十四:人脸特征检测FFD算法之libcvface_api.so人脸属性(年龄,性别,肤色,微笑,种族等)检测流程详解
一起搞IT吧
数码相机算法计算机视觉android人工智能图像处理
【关注我,后续持续新增专题博文,谢谢!!!】上一篇我们讲了:这一篇我们开始讲:Camera相机人脸识别系列专题分析之十四:人脸特征检测FFD算法之libcvface_api.so人脸属性(年龄,性别,肤色,微笑,种族等)检测流程详解目录一、背景二、:FFD算法libcvface_api.so人脸属性检测流程详解2.1:FFD初始化阶段2.2:FFD人脸属性检测process2.3:fd_algo_
- 深度学习在人脸识别中的应用及Python实现
loop_syntax648
机器学习-深度学习
人脸识别是一种通过计算机技术识别和验证人脸的方法,近年来深度学习在人脸识别领域取得了显著的进展。深度学习模型能够学习和提取人脸图像中的高级特征,从而实现准确的人脸识别。本文将介绍深度学习在人脸识别中的应用,并提供Python实现的源代码。深度学习模型通常基于卷积神经网络(ConvolutionalNeuralNetwork,CNN)进行人脸识别。CNN是一种专门用于处理图像和视觉数据的神经网络模型
- 人脸识别python实现源码(功能丰富)
张沙姗
人脸识别python实现源码(功能丰富)去发现同类优质开源项目:https://gitcode.com/此仓库提供了一组基于Python的人脸识别源码,利用dlib库的先进面部识别功能构建而成,并具备深度学习特性。以下是对该资源的详细介绍:功能特点在Wild标记的LabeledFaces数据集上实现99.38%的准确度。提供简单的命令行工具,支持以下功能:在图像文件夹中找到出现的所有面孔。获取每个
- python实现面部特效_【AI美颜算法】300行Python实现基于人脸特征的美颜算法
先上效果图:AI美颜人类一直是一个看脸的物种,人人都希望可以变得更美是无可争议的,而美颜类应用的出现拯救了所有人,从此人类进入了美(照)颜(骗)时代。。。。。每次写技术blog都要写一堆废话引言,现在懒得写,大概就是美颜很重要,美女主播靠它活,没了它大部分妹子不敢发朋友圈blabla。美颜算法的基础是人脸识别技术,市面上的美颜应用普遍使用了CV科技类公司的人脸识别(特征点提取)接口:MeituKi
- 计算机视觉入门:OpenCV 人脸识别与手势控制系统全解析
高山仰星
计算机视觉opencv人工智能
1.引言计算机视觉(ComputerVision)是人工智能的重要领域,而OpenCV(OpenSourceComputerVisionLibrary)是最常用的开源计算机视觉库。它广泛用于图像处理、人脸识别、目标检测、手势识别等多个应用场景。本教程将详细介绍OpenCV的核心概念,并通过人脸识别的门禁系统和手势识别的智能控制系统这两个案例,帮助你掌握OpenCV的实际应用。2.OpenCV介绍与
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo