- Labelbox:引领AI与人类协作的未来
魏兴雄Milburn
Labelbox:引领AI与人类协作的未来labelbox-pythonLabelboxPythonClient项目地址:https://gitcode.com/gh_mirrors/la/labelbox-python项目介绍Labelbox是一款专为企业和学术研究社区设计的开源工具,旨在简化数据标注、生成高质量的人类反馈数据、评估和提升模型性能,并通过无缝结合AI与人类工作流程来自动化任务。无
- 探索HeidiSQL:一款强大的数据库管理工具
夏庭彭Maxine
探索HeidiSQL:一款强大的数据库管理工具HeidiSQLHeidiSQL:是一个免费且强大的SQL编辑器和数据库管理工具,支持MySQL、PostgreSQL、SQLite等多种数据库。适合数据库管理员和开发者使用HeidiSQL管理数据库和查询数据。项目地址:https://gitcode.com/gh_mirrors/he/HeidiSQL项目介绍HeidiSQL是一款开源的图形化数据库
- 基于python使用scanpy分析单细胞转录组数据
探序基因
单细胞分析python开发语言
探序基因肿瘤研究院整理相关后缀的格式介绍:.h5ad:是一种用于存储单细胞数据的文件格式,可以通过anndata库在Python中处理.loom:高效的数据存储格式(.loom文件),使得用户可以轻松地存储、查询和分析大规模的单细胞数据集。Loompy的设计目标是提供一个快速、灵活且易于使用的工具,以支持生物信息学家和研究人员在单细胞水平上进行数据分析。python的单细胞转录组数据结构说明:da
- 位图(BitMap)实现
小猫猫猫◍˃ᵕ˂◍
bitmap算法
位图(BitMap)实现1.位图简介位图(BitMap)是一种高效的数据结构,用于存储和操作位(bit)数据。每个位可以表示一个布尔值(0或1),常用于去重、排序、快速查找等场景。2.核心功能⚙️设置位(Set):将某一位设置为1。清除位(Clear):将某一位设置为0。获取位(Get):检查某一位是否为1。打印位图(Print):以二进制形式打印位图。3.代码实现packageMyStruct;
- TCP 握手数据包分析
inquisiter
tcp/ip网络linux
一、客户端数据分析:spu@spu:~/code/pcap$tcpdump-rclient_all.pcap-Xreadingfromfileclient_all.pcap,link-typeEN10MB(Ethernet)17:58:56.346748IP192.168.1.178.55814>192.168.1.117.socks:Flags[S],seq2615205588,win64240
- 本地搭建小型 DeepSeek 并进行微调
非著名架构师
大模型知识文档智能硬件人工智能大数据大模型deepseek
本文将指导您在本地搭建一个小型的DeepSeek模型,并进行微调,以处理您的特定数据。1.环境准备Python3.7或更高版本PyTorch1.8或更高版本CUDA(可选,用于GPU加速)Git2.克隆DeepSeek仓库bash复制gitclonehttps://github.com/deepseek-ai/deepseek.gitcddeepseek3.安装依赖bash复制pipinstall
- 网络安全常识
网络安全Ash
web安全网络安全
一、网络安全常识什么是网络安全?网络安全是指网络系统的硬件、软件及其系统中的数据受到保护,不因偶然的或者恶意的原因而遭到破坏、更改、泄露,系统可以连续可靠正常地运行,网络服务不被中断。什么是计算机病毒?计算机病毒(ComputerVirus)是指编制者在计算机程序中插入的破坏计算机功能或者破坏数据,影响计算机使用并且能够自我复制的一组计算机指令或者程序代码。什么是木马?木马是一种带有恶意性质的远程
- SQL 注入攻击
黄亚磊11
数据库
SQL注入攻击了解吗?攻击者在HTTP请求中注入恶意的SQL代码,服务器使用参数构建数据库SQL命令时,恶意SQL被一起构造,并在数据库中执行。用户登录,输入用户名lianggzone,密码123or1=1,如果此时使用参数构造的方法,就会出现select*fromuserwherename='lianggzone'andpassword='123'or'1'='1';不管用户名和密码是什么内容,
- MVCC(多版本并发控制)机制讲解
十五001
基础oracle数据库mysql
MVCC(Multi-VersionConcurrencyControl,多版本并发控制)这是一个在数据库管理系统中非常重要的技术,尤其是在处理并发事务时。别担心,我会用简单易懂的方式来讲解,让你轻松掌握它的原理和作用。1.什么是MVCC?定义MVCC是一种数据库技术,用于通过保留数据的多个版本来提高并发性能,同时避免事务之间的冲突。简单来说,它允许数据库在读取和写入操作时,同时存在多个版本的数据
- SQL面试题集:累计值与1000差值最小的记录
数星星的阿波罗
Sql能力通关sql算法数据库数据仓库大数据数据分析面试
一、题目描述司机累计收入首次接近目标值的订单定位,滴滴平台计划优化司机奖励策略的触发机制,需精准识别司机在接单过程中累计收入首次接近特定目标值1000元的订单节点。该分析用于动态调整奖励发放规则,提升司机接单积极性。样例数据假设表t_sales结构如下:driver_idorder_idincomeorder_time11012002025-02-1909:00:0011023002025-02-
- B4158 [BCSP-X 2024 小学高年级组] 质数补全
wwjjjww
算法数据结构
题目描述Alice在纸条上写了一个质数,第二天再看时发现有些地方污损看不清了。在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数称为质数请你帮助Alice补全这个质数,若有多解输出数值最小的,若无解输出−1。例如纸条上的数字为1∗(∗代表看不清的地方),那么这个质数有可能为11,13,17,19,其中最小的为11。输入格式第一行1个整数t,代表有t组数据。接下来t行,每行1个字符串s代表
- 【自然语言处理|迁移学习-08】:中文语料完型填空
爱学习不掉头发
深度学习自然语言处理(NLP)自然语言处理迁移学习人工智能
文章目录1中文语料完型填空任务介绍2数据集加载及处理3定义下游任务模型4模型训练5.模型测试1中文语料完型填空任务介绍任务介绍:完成中文语料完型填空完型填空是一个分类问题,[MASK]单词有21128种可能数据构建实现分析:使用迁移学习方式完成使用预训练模型bert模型提取文特征,后面添加全连接层和softmax进行单标签多分类2数据集加载及处理数据介绍:数据文件有三个train.csv,test
- 2025年2月9日(数据分析_2)
Mason Lin
Python学习数据分析数据挖掘
散点图frommatplotlibimportpyplotaspltfrommatplotlibimportfont_manager#字体相关#字体font_path=r"C:\Windows\Fonts\msyh.ttc"my_font=font_manager.FontProperties(fname=font_path)x=list(range(31))x2=list(range(31,62
- 利用Beautiful Soup和Pandas进行网页数据抓取与清洗处理实战
傻啦嘿哟
pandas
目录一、准备工作二、抓取网页数据三、数据清洗四、数据处理五、保存数据六、完整代码示例七、总结在数据分析和机器学习的项目中,数据的获取、清洗和处理是非常关键的步骤。今天,我们将通过一个实战案例,演示如何利用Python中的BeautifulSoup库进行网页数据抓取,并使用Pandas库进行数据清洗和处理。这个案例不仅适合初学者,也能帮助有一定经验的朋友快速掌握这两个强大的工具。一、准备工作在开始之
- 鸢尾花分类项目 GUI
编织幻境的妖
分类数据挖掘人工智能
1.机器学习的定义机器学习是一门人工智能的分支,专注于开发算法和统计模型,使计算机能够在没有明确编程的情况下从数据中自动学习和改进。通过识别数据中的模式和规律,机器学习系统可以做出预测或决策。常见的应用包括图像识别、语音识别、推荐系统等。2.为什么使用鸢尾花数据集(Irisdataset)鸢尾花数据集是一个经典的多类分类问题数据集,由英国统计学家和遗传学家RonaldFisher在1936年引入。
- Mybatisplus更新某个字段为null
辉夜姬想环游世界
日常记录javaspring开发语言
使用@TableField(updateStrategy=FieldStrategy.IGNORED)注解要更新的字段。@TableField注解是Mybatisplus框架中提供的一个注解,主要用于实体类(Entity)的字段上,帮助开发者更灵活地映射Java对象属性与数据库表字段之间的关系主要功能:1、字段映射:当实体类和数据库字段不一致时,可以是使用value属性指定数据库字段名@Table
- python读取zip包内文件_Python模块学习:zipfile zip文件操作
weixin_40001634
python读取zip包内文件
最近在写一个网络客户端下载程序,用于下载服务器上的数据。有些数据(如文本,office文档)如果直接传输的话,将会增加通信的数据量,使下载时间变长。服务器在传输这些数据之前先对其进行压缩,客户端接收到数据之后进行解压,这样可以减小网通传输数据的通信量,缩短下载的时间,从而增加客户体验。以前用C#做类似应用程序的时候,我会用SharpZipLib这个开源组件,现在用Python做类似的工作,只要使用
- c#编程:基于C#+Access的学生信息管理系统 课程设计报告撰写提纲
gu20
C#c#课程设计开发语言数据库开发
1.摘要简述系统目标、技术选型(C#+Access)、核心功能及数据库设计亮点。关键词:学生信息管理系统;数据库原理;C#;Access;事务处理。2.引言背景与意义:信息化管理需求、数据库技术在教育领域的应用价值。设计目标:实现学生信息的高效管理,体现数据库规范化、安全性等原理。技术路线:C#(WinForm)、Access数据库、ADO.NET数据访问技术。3.需求分析3.1功能需求:1.学生
- 十大经典排序算法的C++实现与解析
金外飞176
算法算法数据结构c++
经典排序算法的C++实现与解析在计算机科学中,排序算法是数据处理和算法设计的基础。无论是处理大规模数据还是优化小规模数据的性能,排序算法都扮演着重要角色。本文将介绍10种经典排序算法,并提供它们的C++实现代码。这些算法包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序、计数排序、基数排序和桶排序。1.冒泡排序(BubbleSort)原理冒泡排序是最简单的排序算法之一。它通过重
- Python爬虫requests(详细)
dme.
Python爬虫零基础入门爬虫python
本文来学爬虫使用requests模块的常见操作。1.URL参数无论是在发送GET/POST请求时,网址URL都可能会携带参数,例如:http://www.5xclass.cn?age=19&name=dengres=requests.get(url="https://www.5xclass.cn?age=19&name=deng")res=requests.get(url="https://www
- 毕业论文如何降低AIGC率?
kexiaoya2013
AIGC论文笔记论文阅读
在Deepseek爆火的当下,AI生成内容已经渗透到各个领域,包括论文写作。如果你的论文使用了AI工具辅助写作,那么,如何降低AIGC率呢?一、控制使用比例将AI工具用于辅助性任务,如文献检索、语法检查、词汇替换等,而非核心内容的生成。论文的研究方法、数据分析、结论等核心部分应尽量手动完成。完全依赖AI生成论文会导致AI率过高,而将AI用于辅助性任务则能有效降低AI率。二、采用不同模型不同AI模型
- 解决安装 Node 出现的问题
code_stream
#其他内容node.js
日期:2025-2-16最近要开启一个新项目,我需要使用最新的Node环境。但是我重装之后,出现了一些列的问题,参考网络上的教程,基本上都无法解决,什么配置环境变量,什么创建文件夹,都没有作用,教程太落后了,问AI也是绕圈,毕竟AI的数据集也是来自互联网。最后总算解决了。方式就是,傻瓜式安装(下载node后,安装一直下一步就好,它会帮你完成一切配置),安装之后,最重要的一步来了,记得重启电脑!!!
- 《神经网络与深度学习》(邱锡鹏) 内容概要【不含数学推导】
code_stream
#机器学习神经网络
第1章绪论基本概念:介绍了人工智能的发展历程及不同阶段的特点,如符号主义、连接主义、行为主义等。还阐述了深度学习在人工智能领域的重要地位和发展现状,以及其在图像、语音、自然语言处理等多个领域的成功应用。术语解释人工智能:旨在让机器模拟人类智能的技术和科学。深度学习:一种基于对数据进行表征学习的方法,通过构建具有很多层的神经网络模型,自动从大量数据中学习复杂的模式和特征。第2章机器学习概述基本概念:
- BP 神经网络在考古数据分析中的应用
fanxbl957
人工智能理论与实践神经网络数据分析人工智能
BP神经网络在考古数据分析中的应用摘要:本文深入探讨了BP神经网络在考古数据分析领域的应用。首先阐述了考古数据分析的重要性以及传统分析方法的局限性。随后详细介绍了BP神经网络的结构、原理与训练算法。通过丰富的代码示例展示了如何运用BP神经网络进行考古文物的分类鉴定、年代预测以及遗址空间分布分析等任务,涵盖数据预处理、网络构建、模型训练与评估等关键环节。分析了该应用的优势与局限性,并对其在考古数据分
- RHEL 安装 Hadoop 服务器
XhClojure
hadoop服务器大数据
在这篇文章中,我们将探讨如何在RedHatEnterpriseLinux(RHEL)上安装和配置Hadoop服务器。Hadoop是一个开源的分布式数据处理框架,用于处理大规模数据集。以下是在RHEL上安装Hadoop的详细步骤。步骤1:安装Java在安装Hadoop之前,我们需要确保系统上安装了JavaDevelopmentKit(JDK)。执行以下命令安装JDK:sudoyuminstallja
- 市场波动中的数据分析与策略优化
QQ3990385023
数据分析区块链人工智能
市场波动中的数据分析与策略优化在市场交易中,价格的波动往往受到多种因素影响,包括资金流向、经济数据、政策调整等。如何利用数据分析优化交易策略,提升市场适应能力,是投资者需要重点关注的问题。借助科学的分析方法,结合技术指标,可以更精准地识别趋势,提高交易稳定性。一、市场数据分析的核心要素1.价格趋势分析市场价格的变动通常会形成一定的趋势,例如上涨趋势、震荡趋势或下跌趋势。通过均线(MA)等技术指标,
- 100道计算机网络面试八股文(答案、分析和深入提问)整理
守护海洋的猫
计算机网络面试职场和发展pythondjango
1.说一说POST与GET有哪些区别回答在计算机网络中,POST和GET是HTTP协议中两种主要的请求方法,它们各自具有不同的特性和用途。下面是二者的主要区别:1.数据传输方式GET:数据通过URL传递,参数以查询字符串的形式附加在URL后面。示例:http://example.com/api?name=value&age=30POST:数据包含在HTTP请求的主体部分,数据不会显示在URL中。示
- 2024亚马逊数据分析!
KJYHS
数据分析数据挖掘
整体财务数据23净销售额:全年净销售额达6380亿美元,同比增长11%。净利润:全年净利润为592亿美元,较上年同期的304亿美元增长95%。经营活动现金流:经营活动现金流达1159亿美元,同比增加了36%。各业务板块数据AWS业务1第四季度营收:2024年第四季度,AWS业务实现营收288亿美元,同比增长19%;经营利润达106亿美元,同比增长34亿美元。广告业务5全年营收:2024年广告业务总
- 图像识别与应用
狂踹瘸子那条好脚
python
图像识别作为人工智能领域的重要分支,近年来取得了显著进展,其中卷积神经网络(CNN)功不可没。CNN凭借其强大的特征提取能力,在图像分类、目标检测、人脸识别等任务中表现出色,成为图像识别领域的核心技术。一、卷积神经网络:图像识别的利器CNN是一种专门处理网格状数据的深度学习模型,其结构设计灵感来源于生物视觉系统。与全连接神经网络不同,CNN通过卷积层、池化层等结构,能够有效提取图像的局部特征,并逐
- 大模型如何改变教育?典型应用场景的探究与展望!
AGI大模型学习
大模型应用人工智能AI产品经理llama大模型AI大模型教程
目前,大模型在教育领域的应用主要体现在个性化学习助手、智能问答系统、内容生成与创作辅助、智能写作评估、跨语言学习支持、数学解题辅助等几个方面。大模型技术在教育领域凭借卓越的数据处理能力和深度学习技术,极大推动了教育质量的提升与教育公平的实现。分级分类的教育数据助力大模型发展在构建与优化大模型的过程中,教育数据能够帮助我们更精准地理解教育现象,更有质量地辅助教学。教育数据涵盖广泛,包括但不限于学生的
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f