一. NSConditionLock
NSConditionLock是对NSCondition的进一步封装,可以设置具体的条件值。
NSConditionLock相关API:
@interface NSConditionLock : NSObject {
- (instancetype)initWithCondition:(NSInteger)condition;
@property (readonly) NSInteger condition; //条件值
- (void)lockWhenCondition:(NSInteger)condition; //当条件值为多少加锁,不然就一直等,等到条件值为这个值才加锁
- (BOOL)tryLock;
- (BOOL)tryLockWhenCondition:(NSInteger)condition;
- (void)unlockWithCondition:(NSInteger)condition; //解锁,并把条件值置为多少
- (BOOL)lockBeforeDate:(NSDate *)limit;
- (BOOL)lockWhenCondition:(NSInteger)condition beforeDate:(NSDate *)limit;
@property (nullable, copy) NSString *name;
@end
简单使用如下:
#import "NSConditionLockDemo.h"
@interface NSConditionLockDemo()
@property (strong, nonatomic) NSConditionLock *conditionLock;
@end
@implementation NSConditionLockDemo
- (instancetype)init
{
if (self = [super init]) {
self.conditionLock = [[NSConditionLock alloc] initWithCondition:1];
}
return self;
}
- (void)otherTest
{
//线程1
[[[NSThread alloc] initWithTarget:self selector:@selector(__one) object:nil] start];
//线程2
[[[NSThread alloc] initWithTarget:self selector:@selector(__two) object:nil] start];
//线程3
[[[NSThread alloc] initWithTarget:self selector:@selector(__three) object:nil] start];
}
- (void)__one
{
[self.conditionLock lockWhenCondition:1];
NSLog(@"__one");
sleep(1);
[self.conditionLock unlockWithCondition:2];
}
- (void)__two
{
[self.conditionLock lockWhenCondition:2];
NSLog(@"__two");
sleep(1);
[self.conditionLock unlockWithCondition:3];
}
- (void)__three
{
[self.conditionLock lockWhenCondition:3];
NSLog(@"__three");
[self.conditionLock unlock];
}
@end
可以发现,三个子线程同时执行代码,最后打印结果是:
__one
__two
__three
先执行线程1,再执行线程2,再执行线程3,达到线程3依赖线程2,线程2依赖线程1的效果。
使用场景:
如果子线程有依赖关系(子线程的执行是有顺序的),就可以使用NSConditionLock,设置条件具体的值。
在GNUstep中查看源码:
- (id) init
{
return [self initWithCondition: 0];
}
- (id) initWithCondition: (NSInteger)value
{
if (nil != (self = [super init]))
{
if (nil == (_condition = [NSCondition new]))
{
DESTROY(self);
}
else
{
_condition_value = value;
[_condition setName:
[NSString stringWithFormat: @"condition-for-lock-%p", self]];
}
}
return self;
}
可以发现两个问题:
- 条件值默认是0
- NSConditionLock的确是对NSCondition的封装
二. dispatch_queue(DISPATCH_QUEUE_SERIAL)
直接使用GCD的串行队列,也是可以实现线程同步的
#import "SerialQueueDemo.h"
@interface SerialQueueDemo()
@property (strong, nonatomic) dispatch_queue_t ticketQueue;
@property (strong, nonatomic) dispatch_queue_t moneyQueue;
@end
@implementation SerialQueueDemo
- (instancetype)init
{
if (self = [super init]) {
self.ticketQueue = dispatch_queue_create("ticketQueue", DISPATCH_QUEUE_SERIAL);
self.moneyQueue = dispatch_queue_create("moneyQueue", DISPATCH_QUEUE_SERIAL);
}
return self;
}
- (void)__drawMoney
{
dispatch_sync(self.moneyQueue, ^{
[super __drawMoney];
});
}
- (void)__saveMoney
{
dispatch_sync(self.moneyQueue, ^{
[super __saveMoney];
});
}
- (void)__saleTicket
{
dispatch_sync(self.ticketQueue, ^{
[super __saleTicket];
});
}
@end
dispatch_sync函数的特点:要求立马在当前线程同步执行任务(当前线程是子线程,在MJBaseDemo里面已经写了)。
本来这个方法就是在子线程中执行的,把存钱、取钱操作放到一个串行队列里面,把卖票操作放到另一个串行队列里面。
举例说明:比如线程4进来卖票,那么这个操作就会被放到串行队列中,等一会线程7又进来卖票,这个操作也会被放到串行队列中,串行队列里面的东西是:线程4的卖票操作 - 线程7的卖票操作 - 线程5的卖票操作。
这样线程4卖完,线程7卖,线程7卖完,线程5卖。这样串行队列中的任务是异步的,不会出现多个线程同时访问一个成员变量的问题,这样也能解决线程安全问题。
所以说,线程同步问题也不是必须要通过加锁才能实现。
三. dispatch_semaphore
- semaphore叫做”信号量”
- 信号量的初始值,可以用来控制线程并发访问的最大数量
- 信号量的初始值为1,代表同时只允许1条线程访问资源,保证线程同步
如下代码,创建15条线程,都调用test方法:
@interface SemaphoreDemo()
@property (strong, nonatomic) dispatch_semaphore_t semaphore;
@end
@implementation SemaphoreDemo
- (void)viewDidLoad {
[super viewDidLoad]
self.semaphore = dispatch_semaphore_create(5);
for (int i = 0; i < 15; i++) {
[[[NSThread alloc] initWithTarget:self selector:@selector(test) object:nil] start];
}
}
// 线程10、7、6、9、8
- (void)test
{
// 如果信号量的值 > 0,就让信号量的值减1,然后继续往下执行代码
// 如果信号量的值 <= 0,就会休眠等待,直到信号量的值变成>0,就让信号量的值减1,然后继续往下执行代码
// 第二个参数代表等到啥时候,传入的DISPATCH_TIME_FOREVER,代表一直等
dispatch_semaphore_wait(self.semaphore, DISPATCH_TIME_FOREVER);
sleep(2);
NSLog(@"test - %@", [NSThread currentThread]);
// 让信号量的值+1
dispatch_semaphore_signal(self.semaphore);
}
@end
打印:
test - {number = 7, name = (null)}
test - {number = 9, name = (null)}
test - {number = 8, name = (null)}
test - {number = 10, name = (null)}
test - {number = 4, name = (null)}
间隔2秒
test - {number = 12, name = (null)}
test - {number = 11, name = (null)}
test - {number = 13, name = (null)}
test - {number = 5, name = (null)}
test - {number = 14, name = (null)}
间隔2秒
test - {number = 15, name = (null)}
test - {number = 16, name = (null)}
test - {number = 17, name = (null)}
test - {number = 6, name = (null)}
test - {number = 3, name = (null)}
上面代码,创建了15条线程,如果不控制线程并发访问的最大数量,那么有可能15条线程同时访问test方法,这样就不安全。使用了信号量,发现最多只有5条线程访问test,这5条访问完,后面5条线程继续访问。
所以,如果信号量的初始值为1,代表同时只允许1条线程访问资源,保证线程同步,代码如下:
#import "SemaphoreDemo.h"
@interface SemaphoreDemo()
@property (strong, nonatomic) dispatch_semaphore_t ticketSemaphore;
@property (strong, nonatomic) dispatch_semaphore_t moneySemaphore;
@end
@implementation SemaphoreDemo
- (instancetype)init
{
if (self = [super init]) {
//设置信号量的初始值为1,代表同时只允许1条线程访问资源,保证线程同步
self.ticketSemaphore = dispatch_semaphore_create(1);
self.moneySemaphore = dispatch_semaphore_create(1);
}
return self;
}
- (void)__drawMoney
{
dispatch_semaphore_wait(self.moneySemaphore, DISPATCH_TIME_FOREVER);
[super __drawMoney];
dispatch_semaphore_signal(self.moneySemaphore);
}
- (void)__saveMoney
{
dispatch_semaphore_wait(self.moneySemaphore, DISPATCH_TIME_FOREVER);
[super __saveMoney];
dispatch_semaphore_signal(self.moneySemaphore);
}
- (void)__saleTicket
{
dispatch_semaphore_wait(self.ticketSemaphore, DISPATCH_TIME_FOREVER);
[super __saleTicket];
dispatch_semaphore_signal(self.ticketSemaphore);
}
信号量原理:
dispatch_semaphore_t ticketSemaphore = dispatch_semaphore_create(1);
//如果信号量的值 > 0,就让信号量的值减1,然后继续往下执行代码
//如果信号量的值 <= 0,就会休眠等待,直到信号量的值变成>0,就让信号量的值减1,然后继续往下执行代码
//第二个参数代表等到啥时候,传入的DISPATCH_TIME_FOREVER,代表一直等
dispatch_semaphore_wait(ticketSemaphore, DISPATCH_TIME_FOREVER);
......
//让信号量的值+1
dispatch_semaphore_signal(ticketSemaphore);
小提示:控制线程并发访问的最大数量也可以用
NSOperationQueue *queue;
queue.maxConcurrentOperationCount = 5;
四. @synchronized
- @synchronized是对mutex递归锁的封装
- @synchronized(obj)内部会生成obj对应的递归锁,然后进行加锁、解锁操作
使用如下:
#import "SynchronizedDemo.h"
@implementation SynchronizedDemo
- (void)__drawMoney
{
//最简单的一种方式,但是性能比较差,苹果不推荐使用,所以打出来的时候没提示。
//其中()中是拿什么当做一把锁,比如下面是拿当前类对象当做一把锁。
//为什么把类对象当做一把锁?因为类对象只有一个,以后无论什么实例对象调用这个方法,都是类对象作为锁,这样就只有一把锁,才能锁住。
@synchronized([self class]) {
[super __drawMoney];
}
}
- (void)__saveMoney
{
@synchronized([self class]) { // objc_sync_enter
[super __saveMoney];
} // objc_sync_exit
}
- (void)__saleTicket
{
//除了用类对象作为一把锁,也可以直接传入一个其他对象,并且要dispatch_once_t,保证以后不管调用多少次都是同一个对象。
static NSObject *lock;
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
lock = [[NSObject alloc] init];
});
@synchronized(lock) {
[super __saleTicket];
}
}
@end
在@synchronized处打断点,查看汇编,可以发现会调用objc_sync_enter和objc_sync_exit。就相当于,第一个“{”是objc_sync_enter,第二个“}”是objc_sync_exit,如下:
@synchronized([self class]) { // objc_sync_enter
......
} // objc_sync_exit
然后在objc4中的objc-sync.mm文件中查看objc_sync_enter函数的源码实现:
typedef struct SyncData {
struct SyncData* nextData;
DisguisedPtr object;
int32_t threadCount;
recursive_mutex_t mutex; //递归锁
} SyncData;
int objc_sync_enter(id obj)
{
int result = OBJC_SYNC_SUCCESS;
if (obj) {//将传进来的obj转成data
SyncData* data = id2data(obj, ACQUIRE);
assert(data);
data->mutex.lock();//再从data里面取出一把递归锁,所以只要obj一样,取出的锁也一样
} else {
if (DebugNilSync) {
_objc_inform("NIL SYNC DEBUG: @synchronized(nil); set a breakpoint on objc_sync_nil to debug");
}
objc_sync_nil();
}
return result;
}
从上面代码可以看出,将传进来的obj转成data,再从data里面取出一把递归锁,所以只要obj一样,取出的锁也一样,所以我们上面才说传入的obj要唯一。
递归锁:允许同一个线程对一把锁进行重复加锁(解锁)
既然@synchronized是递归锁,那么肯定可以做递归锁可以做的事情,如下:
- (void)otherTest {
@synchronized([self class]) {
NSLog(@"123");
//递归调用10次
static int count = 0;
if (count < 10) {
count++;
[self otherTest];
}
}
}
上面代码,递归调用10次,最后打印10次“123”。如果将@synchronized换成其他锁,递归调用就会造成死锁,最后结果打印了10次,说明的确是递归锁。
注意:@synchronized和@synthesize、@dynamic不一样,别弄混淆了,关于@synthesize、@dynamic可参考Runtime3-objc_msgSend底层调用流程的补充内容。
五. 总结:回忆一下前面学的各种锁
OSSpinLock 自旋锁,因为底层是使用while循环进行忙等,不会进行休眠和唤醒,所以是性能比较高的一把锁,但是现在已经不安全,被抛弃。
os_unfair_lock 用于取代不安全的OSSpinLock ,从iOS10开始才支持。从底层调用看,等待os_unfair_lock锁的线程会处于休眠状态,并非忙等,是一种互斥锁。
pthread_mutex mutex叫做”互斥锁”,等待锁的线程会处于休眠状态。
它是跨平台的,当传入的类型是默认的就是默认锁,当传入PTHREAD_MUTEX_RECURSIVE,就是递归锁,还可以通过pthread_cond_wait(&_cond, &_mutex)当做条件锁来使用。
dispatch_semaphore 信号量的初始值为1,代表同时只允许1条线程访问资源,保证线程同步
dispatch_queue(DISPATCH_QUEUE_SERIAL) 直接使用GCD的串行队列,也是可以实现线程同步的
NSLock是对mutex普通锁的封装
NSRecursiveLock是对mutex递归锁的封装,API跟NSLock基本一致
NSCondition是对mutex和cond的封装
NSConditionLock是对NSCondition的进一步封装,可以设置具体的条件值
@synchronized也是对mutex递归锁的封装
@synchronized(obj)内部会生成obj对应的递归锁,然后进行加锁、解锁操作
六. 各种锁性能比较
自此,iOS中各种锁基本上都讲完了,下面比较一下性能,然后找出一个最好的,留着开发中使用。
性能从高到低排序:
os_unfair_lock iOS10开始支持
OSSpinLock 不安全,被抛弃
dispatch_semaphore 如果需要iOS8、9都支持可以使用
pthread_mutex 可以跨平台
dispatch_queue(DISPATCH_QUEUE_SERIAL) 本来GCD效率就很高
NSLock 对mutex普通锁的封装
NSCondition 对mutex和cond的封装
pthread_mutex(recursive) mutex递归锁,递归锁效率本来就低
NSRecursiveLock 对mutex递归锁的封装
NSConditionLock 对NSCondition的封装
@synchronized 对mutex递归锁的封装
总结:
一般推荐使用os_unfair_lock、dispatch_semaphore、pthread_mutex。
使用技巧:
对于dispatch_semaphore来说,如果下面每个方法的锁都是不一样的,我们可以写成下面这样的宏:
#define SemaphoreBegin \
static dispatch_semaphore_t semaphore; \
static dispatch_once_t onceToken; \
dispatch_once(&onceToken, ^{ \
semaphore = dispatch_semaphore_create(1); \
}); \
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
#define SemaphoreEnd \
dispatch_semaphore_signal(semaphore);
使用如下:
- (void)test1
{
SemaphoreBegin;
// .....
SemaphoreEnd;
}
- (void)test2
{
SemaphoreBegin;
// .....
SemaphoreEnd;
}
- (void)test3
{
SemaphoreBegin;
// .....
SemaphoreEnd;
}
这样就保证每个方法内部的锁都不一样,同时使用起来也很简单。
如果每个方法的锁都是一样的,那就只能把锁写到外面去了。
同理,pthread_mutex也可以这样封装。
七. 面试题
你理解的多线程?
就是多条线程同时做事情,优点就是效率高,缺点就是可能会造成线程安全问题。iOS的多线程方案有哪几种?你更倾向于哪一种?
多线程方案如下图,更倾向于GCD。
① 这些多线程方案的底层都是依赖pthread
② NSThread线程生命周期是程序员管理,GCD和NSOperation是系统自动管理
③ NSThread和NSOperation都是OC的,更加面向对象
④ NSOperation基于CGD,使用更加面向对象
你在项目中用过 GCD 吗?
GCD 的队列类型?
说一下 OperationQueue 和 GCD 的区别,以及各自的优势有哪些?
线程安全的处理手段有哪些?
上面讲的OC你了解的锁有哪些?在你回答基础上进行二次提问;
追问一:自旋和互斥对比?
追问二:使用以上锁需要注意哪些?
追问三:用C/OC/C++,任选其一,实现自旋或互斥?口述即可!自旋锁、互斥锁比较?
自旋锁:顾名思义就是自己一直在旋转的锁,比如上面的OSSpinLock,它底层是个while循环。
互斥锁:互斥锁提供一个可以在同一时间,只让一个线程访问临界资源的操作接口。互斥锁(Mutex)是个提供线程同步的基本锁。上锁后,其他的线程如果想要锁上,那么会被阻塞(线程休眠),直到锁释放后(说明,一般会把访问共享内存这段代码放在上锁程序之后)———百度百科
上面讲的那些锁,除了OSSpinLock是自旋锁,其他的都是互斥锁。
什么情况使用自旋锁比较划算?
预计线程等待锁的时间很短
加锁的代码(临界区)经常被调用,但竞争情况很少发生
CPU资源不紧张
多核处理器什么情况使用互斥锁比较划算?
预计线程等待锁的时间较长
单核处理器
临界区有IO操作,因为IO操作比较占用CPU资源
临界区代码复杂或者循环量大
临界区竞争非常激烈
八. atomic
nonatomic和atomic
atom:原子,不可再分割的单位
atomic:原子性
原子性操作就说明这个操作是个整体,不可分割的。
比如如下三行代码,如果不是原子性操作,那么这三行代码就有可能被三个线程执行,这样肯定是不行的,那怎么变成原子性操作呢?
在第一行前面加锁,第三行后面解锁,就变成了原子性操作,变成原子性操作之后要么不执行,要执行必须把三行一块执行完,如下:
// 加锁
int a = 10;
int b = 20;
int c = a + b;
// 解锁
atomic用于保证属性setter、getter的原子性操作,相当于在getter和setter内部加了线程同步的锁,也就是setter和getter内部都有加锁操作。
在objc4的objc-accessors.mm文件找到如下源码:
static inline void reallySetProperty(id self, SEL _cmd, id newValue, ptrdiff_t offset, bool atomic, bool copy, bool mutableCopy)
{
if (offset == 0) {
object_setClass(self, newValue);
return;
}
id oldValue;
id *slot = (id*) ((char*)self + offset);
if (copy) {
newValue = [newValue copyWithZone:nil];
} else if (mutableCopy) {
newValue = [newValue mutableCopyWithZone:nil];
} else {
if (*slot == newValue) return;
newValue = objc_retain(newValue);
}
if (!atomic) { //如果是nonatomic,就直接赋值
oldValue = *slot;
*slot = newValue;
} else { //如果是atomic,就先加锁后解锁
spinlock_t& slotlock = PropertyLocks[slot];
slotlock.lock(); //加锁
oldValue = *slot;
*slot = newValue;
slotlock.unlock(); //解锁
}
objc_release(oldValue);
}
可以发现,setter方法里面,如果是nonatomic,就直接赋值,如果是atomic,就先加锁后解锁,getter方法也一样,就不解释了。
对于atomic,上面我们说了setter、getter方法内部会有加锁、解锁操作,但它并不能保证使用属性的过程是线程安全的,什么意思呢?
如下:
@interface MJPerson : NSObject
@property (strong, atomic) NSMutableArray *data; //atomic修饰
@end
//执行以下代码:
int main(int argc, const char * argv[]) {
@autoreleasepool {
MJPerson *p = [[MJPerson alloc] init];
for (int i = 0; i < 10; i++) {
dispatch_async(NULL, ^{
p.data = [NSMutableArray array];
});
}
NSMutableArray *array = p.data;
// 没有加锁
[array addObject:@"1"];
[array addObject:@"2"];
[array addObject:@"3"];
// 没有解锁
}
return 0;
}
上面代码 p.data = [NSMutableArray array] 这一行是线程安全的,因为它的setter方法内部有加锁、解锁操作。
但是 [array addObject:@"1"] 这一行就不是线程安全的了,因为它没有加锁、解锁操作。
既然atomic是线程安全的,那么为什么开发中我们基本不用呢?
太耗性能了,因为setter、getter方法调用次数太频繁了,如果每次都需要加锁、解锁,那手机CPU资源不就被你消耗完了。所以atomic一般在MAC上才使用。
而且只有多条线程同时访问同一个对象的属性,才会有线程安全问题。这种情况几乎没有,如果你非要造出来这种情况,比如如下代码,多条线程同时访问 p.data ,那你完全可以在外面加锁嘛!
for (int i = 0; i < 10; i++) {
dispatch_async(NULL, ^{
// 在外面加锁
p.data = [NSMutableArray array];
// 在外面解锁
});
}
九. 读写安全方案
显然,如果使用上面讲的加锁方案,那么无论读、写,同一时间只有一条线程在执行,这样效率比较低,实际上读操作可以同时多条线程一起执行的。
思考如何实现以下场景
同一时间,只能有1个线程进行写的操作
同一时间,允许有多个线程进行读的操作
同一时间,不允许既有写的操作,又有读的操作
上面的场景就是典型的“多读单写”,经常用于文件等数据的读写操作,iOS中的实现方案有:
- pthread_rwlock_t:读写锁
- dispatch_barrier_async:异步栅栏调用
1. pthread_rwlock_t
等待锁的线程会进入休眠(有点互斥锁的感觉)
代码如下:
#import "ViewController.h"
#import
@interface ViewController ()
@property (assign, nonatomic) pthread_rwlock_t lock; //读写锁
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
// 初始化锁
pthread_rwlock_init(&_lock, NULL);
dispatch_queue_t queue = dispatch_get_global_queue(0, 0);
for (int i = 0; i < 10; i++) {
//读
dispatch_async(queue, ^{
[self read];
});
dispatch_async(queue, ^{
[self read];
});
dispatch_async(queue, ^{
[self read];
});
//写
dispatch_async(queue, ^{
[self write];
});
dispatch_async(queue, ^{
[self write];
});
dispatch_async(queue, ^{
[self write];
});
}
}
- (void)read {
//读-尝试加锁
//pthread_rwlock_tryrdlock(&_lock);
//读-加锁
pthread_rwlock_rdlock(&_lock);
sleep(1);
NSLog(@"%s--线程:%@", __func__,[NSThread currentThread]);
//解锁
pthread_rwlock_unlock(&_lock);
}
- (void)write
{
//写-尝试加锁
//pthread_rwlock_trywrlock(&_lock);
//写-加锁
pthread_rwlock_wrlock(&_lock);
sleep(1);
NSLog(@"%s--线程:%@", __func__,[NSThread currentThread]);
//解锁
pthread_rwlock_unlock(&_lock);
}
- (void)dealloc
{
//销毁
pthread_rwlock_destroy(&_lock);
}
@end
打印:
2021-06-01 15:41:18.160200+0800 -[read]--线程:{number = 4, name = (null)}
2021-06-01 15:41:18.160212+0800 -[read]--线程:{number = 7, name = (null)}
2021-06-01 15:41:19.162515+0800 -[write]--线程:{number = 3, name = (null)}
2021-06-01 15:41:20.165942+0800 -[read]--线程:{number = 5, name = (null)}
2021-06-01 15:41:21.166782+0800 -[write]--线程:{number = 8, name = (null)}
2021-06-01 15:41:22.172355+0800 -[write]--线程:{number = 9, name = (null)}
2021-06-01 15:41:23.176932+0800 -[read]--线程:{number = 10, name = (null)}
2021-06-01 15:41:23.176946+0800 -[read]--线程:{number = 11, name = (null)}
2021-06-01 15:41:23.176946+0800 -[read]--线程:{number = 12, name = (null)}
2021-06-01 15:41:24.182928+0800 -[write]--线程:{number = 13, name = (null)}
2021-06-01 15:41:25.188879+0800 -[write]--线程:{number = 14, name = (null)}
2021-06-01 15:41:26.189801+0800 -[write]--线程:{number = 15, name = (null)}
2021-06-01 15:41:27.194003+0800 -[read]--线程:{number = 18, name = (null)}
2021-06-01 15:41:27.193997+0800 -[read]--线程:{number = 17, name = (null)}
2021-06-01 15:41:27.193997+0800 -[read]--线程:{number = 16, name = (null)}
2021-06-01 15:41:28.194641+0800 -[write]--线程:{number = 19, name = (null)}
2021-06-01 15:41:29.198154+0800 -[write]--线程:{number = 20, name = (null)}
2021-06-01 15:41:30.203043+0800 -[write]--线程:{number = 21, name = (null)}
2021-06-01 15:41:31.208880+0800 -[read]--线程:{number = 22, name = (null)}
2021-06-01 15:41:31.208880+0800 -[read]--线程:{number = 24, name = (null)}
2021-06-01 15:41:31.208874+0800 -[read]--线程:{number = 23, name = (null)}
2021-06-01 15:41:32.209671+0800 -[write]--线程:{number = 25, name = (null)}
2021-06-01 15:41:33.215514+0800 -[write]--线程:{number = 26, name = (null)}
2021-06-01 15:41:34.221247+0800 -[write]--线程:{number = 27, name = (null)}
2021-06-01 15:41:35.227011+0800 -[read]--线程:{number = 29, name = (null)}
2021-06-01 15:41:35.227010+0800 -[read]--线程:{number = 28, name = (null)}
2021-06-01 15:41:35.227011+0800 -[read]--线程:{number = 30, name = (null)}
2021-06-01 15:41:36.231641+0800 -[write]--线程:{number = 31, name = (null)}
2021-06-01 15:41:37.237418+0800 -[write]--线程:{number = 32, name = (null)}
2021-06-01 15:41:38.243212+0800 -[write]--线程:{number = 33, name = (null)}
可以发现,读同时进行,写就不能同时进行了。
2. dispatch_barrier_async
废话少说,先看怎么使用,如下:
#import "ViewController.h"
@interface ViewController ()
@property (strong, nonatomic) dispatch_queue_t queue;
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
//手动创建并发队列
self.queue = dispatch_queue_create("rw_queue", DISPATCH_QUEUE_CONCURRENT);
for (int i = 0; i < 10; i++) {
//读
dispatch_async(self.queue, ^{
[self read];
});
dispatch_async(self.queue, ^{
[self read];
});
dispatch_async(self.queue, ^{
[self read];
});
//写
//当有一条线程在执行这个任务的时候,绝不允许queue中有其他线程在执行其他任务(包括上面的read和下面的write)
dispatch_barrier_async(self.queue, ^{
[self write];
});
dispatch_barrier_async(self.queue, ^{
[self write];
});
dispatch_barrier_async(self.queue, ^{
[self write];
});
}
}
- (void)read {
sleep(1);
NSLog(@"%s--线程:%@", __func__,[NSThread currentThread]);
}
- (void)write
{
sleep(1);
NSLog(@"%s--线程:%@", __func__,[NSThread currentThread]);
}
@end
打印如下:
2021-06-01 16:00:12.233462+0800 -[read]--线程:{number = 6, name = (null)}
2021-06-01 16:00:12.233472+0800 -[read]--线程:{number = 3, name = (null)}
2021-06-01 16:00:12.233479+0800 -[read]--线程:{number = 5, name = (null)}
2021-06-01 16:00:13.237569+0800 -[write]--线程:{number = 6, name = (null)}
2021-06-01 16:00:14.239756+0800 -[write]--线程:{number = 6, name = (null)}
2021-06-01 16:00:15.243263+0800 -[write]--线程:{number = 6, name = (null)}
2021-06-01 16:00:16.248324+0800 -[read]--线程:{number = 3, name = (null)}
2021-06-01 16:00:16.248324+0800 -[read]--线程:{number = 5, name = (null)}
2021-06-01 16:00:16.248324+0800 -[read]--线程:{number = 6, name = (null)}
2021-06-01 16:00:17.253537+0800 -[write]--线程:{number = 6, name = (null)}
2021-06-01 16:00:18.256256+0800 -[write]--线程:{number = 6, name = (null)}
2021-06-01 16:00:19.257152+0800 -[write]--线程:{number = 6, name = (null)}
2021-06-01 16:00:20.262030+0800 -[read]--线程:{number = 5, name = (null)}
2021-06-01 16:00:20.262026+0800 -[read]--线程:{number = 6, name = (null)}
2021-06-01 16:00:20.262049+0800 -[read]--线程:{number = 7, name = (null)}
2021-06-01 16:00:21.262937+0800 -[write]--线程:{number = 6, name = (null)}
2021-06-01 16:00:22.268470+0800 -[write]--线程:{number = 6, name = (null)}
2021-06-01 16:00:23.273291+0800 -[write]--线程:{number = 6, name = (null)}
2021-06-01 16:00:24.279084+0800 -[read]--线程:{number = 7, name = (null)}
2021-06-01 16:00:24.279085+0800 -[read]--线程:{number = 5, name = (null)}
2021-06-01 16:00:24.279085+0800 -[read]--线程:{number = 6, name = (null)}
2021-06-01 16:00:25.281132+0800 -[write]--线程:{number = 6, name = (null)}
2021-06-01 16:00:26.282865+0800 -[write]--线程:{number = 6, name = (null)}
2021-06-01 16:00:27.286220+0800 -[write]--线程:{number = 6, name = (null)}
2021-06-01 16:00:28.290012+0800 -[read]--线程:{number = 5, name = (null)}
2021-06-01 16:00:28.290012+0800 -[read]--线程:{number = 6, name = (null)}
2021-06-01 16:00:28.290012+0800 -[read]--线程:{number = 7, name = (null)}
2021-06-01 16:00:29.290888+0800 -[write]--线程:{number = 6, name = (null)}
2021-06-01 16:00:30.296537+0800 -[write]--线程:{number = 6, name = (null)}
2021-06-01 16:00:31.301259+0800 -[write]--线程:{number = 6, name = (null)}
可以发现,打印结果和读写锁一样,读同时进行,写就不能同时进行,说明dispatch_barrier_async在文件IO操作中也是有用的。
那么是如何做到的呢?
- 首先,对于读操作,使用dispatch_async,所以读操作是异步的。
- 对于写操作,使用dispatch_barrier_async,保证当有一条线程在执行这个任务的时候,绝不允许queue中有其他线程在执行其他任务。
示意图如下:
注意:这个dispatch_barrier_async函数传入的并发队列必须是自己手动通过dispatch_queue_cretate创建的。如果传入的是一个串行或是一个全局的并发队列,那这个函数便等同于dispatch_async函数的效果。
dispatch_barrier_async和dispatch_barrier_sync的区别
相同点:使用dispatch_barrier_async和dispatch_barrier_sync,都保证当有一条线程在执行这个任务的时候,绝不允许queue中有其他线程在执行其他任务。
不同点:dispatch_barrier_async是异步栅栏,会开启新线程(如上打印所示),dispatch_barrier_sync是同步栅栏,不会开启新线程。
如果把上面代码改成:
dispatch_barrier_sync(self.queue, ^{
[self write];
});
打印如下:
2021-06-01 16:20:51.992188+0800 -[read]--线程:{number = 4, name = (null)}
2021-06-01 16:20:51.992205+0800 -[read]--线程:{number = 5, name = (null)}
2021-06-01 16:20:51.992208+0800 -[read]--线程:{number = 6, name = (null)}
2021-06-01 16:20:52.993967+0800 -[write]--线程:{number = 1, name = main}
2021-06-01 16:20:53.995608+0800 -[write]--线程:{number = 1, name = main}
2021-06-01 16:20:54.996736+0800 -[write]--线程:{number = 1, name = main}
2021-06-01 16:20:56.001371+0800 -[read]--线程:{number = 5, name = (null)}
2021-06-01 16:20:56.001470+0800 -[read]--线程:{number = 6, name = (null)}
2021-06-01 16:20:56.001486+0800 -[read]--线程:{number = 4, name = (null)}
2021-06-01 16:20:57.002200+0800 -[write]--线程:{number = 1, name = main}
2021-06-01 16:20:58.003470+0800 -[write]--线程:{number = 1, name = main}
2021-06-01 16:20:59.004165+0800 -[write]--线程:{number = 1, name = main}
2021-06-01 16:21:00.005287+0800 -[read]--线程:{number = 6, name = (null)}
2021-06-01 16:21:00.005287+0800 -[read]--线程:{number = 4, name = (null)}
2021-06-01 16:21:00.005287+0800 -[read]--线程:{number = 5, name = (null)}
2021-06-01 16:21:01.005890+0800 -[write]--线程:{number = 1, name = main}
2021-06-01 16:21:02.006747+0800 -[write]--线程:{number = 1, name = main}
2021-06-01 16:21:03.008123+0800 -[write]--线程:{number = 1, name = main}
2021-06-01 16:21:04.009767+0800 -[read]--线程:{number = 5, name = (null)}
2021-06-01 16:21:04.009768+0800 -[read]--线程:{number = 6, name = (null)}
2021-06-01 16:21:04.009781+0800 -[read]--线程:{number = 3, name = (null)}
2021-06-01 16:21:05.010196+0800 -[write]--线程:{number = 1, name = main}
2021-06-01 16:21:06.010984+0800 -[write]--线程:{number = 1, name = main}
2021-06-01 16:21:07.011930+0800 -[write]--线程:{number = 1, name = main}
2021-06-01 16:21:08.014189+0800 -[read]--线程:{number = 5, name = (null)}
2021-06-01 16:21:08.014189+0800 -[read]--线程:{number = 6, name = (null)}
2021-06-01 16:21:08.014190+0800 -[read]--线程:{number = 4, name = (null)}
2021-06-01 16:21:09.015798+0800 -[write]--线程:{number = 1, name = main}
2021-06-01 16:21:10.016433+0800 -[write]--线程:{number = 1, name = main}
2021-06-01 16:21:11.017820+0800 -[write]--线程:{number = 1, name = main}
可以发现,使用dispatch_barrier_sync没有开启新线程,写操作在当前线程(主线程)执行。
Demo地址:加锁方案2