- RFM案例(简要版)
郜太素
数据处理和统计分析NumpypandasRFM案例mysql学习方法sql
一、会员价值度模型1、RFM模型介绍会员价值度用来评估用户的价值情况,是区分会员价值的重要模型和参考依据,也是衡量不同营销效果的关键指标之一。价值度模型一般基于交易行为产生,衡量的是有实体转化价值的行为。常用的价值度模型是RFMRFM模型是根据会员最近一次购买时间R(Recency)购买频率F(Frequency)购买金额M(Monetary)计算得出RFM得分通过这3个维度来评估客户的订单活跃价
- 如何评估一个RAG系统(RAGas评测框架)-下篇
写程序的小火箭
大语言模型人工智能语言模型chatgptlangchaingpt
RAGas是一个用于评测RAG系统的评测框架,它支持与不同大语言模型的集成,并与langchain生态打通,能够很方便的构建评测系统。下面是RAGas的一些链接论文:https://arxiv.org/pdf/2309.15217官方文档:Ragashttps://github.com/explodinggradients/ragas官方文档及github对框架的使用介绍的比较详细,本文不会就该方
- 【AI大模型应用开发】【RAG评估】0. 综述:一文了解RAG评估方法、工具与指标
同学小张
大模型人工智能笔记经验分享gptagiAIGC
大家好,我是同学小张,日常分享AI知识和实战案例欢迎点赞+关注,持续学习,持续干货输出。+v:jasper_8017一起交流,一起进步。微信公众号也可搜【同学小张】本站文章一览:前面我们学习了RAG的基本框架并进行了实践,我们也知道使用它的目的是为了改善大模型在一些方面的不足:如训练数据不全、无垂直领域数据、容易出现幻觉等。那么如何评估RAG的效果呢?本文我们来了解一下。文章目录推荐前置阅读0.R
- 使用BLSTM自动评估句子级构音障碍的可理解性
帅小柏
声音的未来:语音识别文献解读深度学习人工智能分类
使用BLSTM自动评估句子级构音障碍的可理解性原文:AutomaticAssessmentofSentence-LevelDysarthriaIntelligibilityUsingBLSTM引言构音障碍简介构音障碍的定义与特征构音障碍是一种由神经原因引起的运动性言语障碍表现为肌肉无力、瘫痪或协调不良,导致言语清晰度下降可理解性的重要性可理解性是衡量言语障碍严重程度的重要指标自动评估可帮助语言病理
- 深度学习模型性能全景评估与优化指南
niuTaylor
深度学习人工智能
深度学习模型性能全景评估与优化指南一、算力性能指标体系1.核心算力指标对比指标计算方式适用场景硬件限制TOPS(TeraOperationsPerSecond)每秒万亿次整数运算量化模型推理NVIDIAJetsonNano仅支持FP16/FP32TFLOPS(TeraFLoating-pointOPerationsperSecond)TFLOPS=Cores×FLOPs/Cycle×Frequen
- 《今日AI-人工智能-编程日报》-源自2025年3月21日
小亦编辑部
人工智能
一、AI编程领域最新动态AI编程工具崛起,程序员职业面临挑战Anthropic首席执行官DarioAmodei预言,未来一年内,90%的代码将由AI生成,传统程序员的工作可能被大幅替代。最新发布的AI编程模型(如Claude3.7、Sonnet3.7)在初级开发评估中表现优异,得分率超过60%,部分模型甚至在全球程序员排名中位列前0.1%。字节跳动的Trae海外版接入Claude3.7和GPT-4
- LoadRunner 11 性能测试全面教程
金融先生-Frank
本文还有配套的精品资源,点击获取简介:LoadRunner11(LR11)是HP开发的一款企业级性能测试工具,支持多应用程序类型的负载测试,用于性能评估、瓶颈识别和系统优化。教程详细介绍LR11的组件功能、脚本开发、场景设置、测试执行、结果分析、性能指标监测、故障诊断以及自动化测试等,提供从初级到高级的完整学习路径。1.LoadRunner11(LR11)功能概述LoadRunner11(LR11
- 大模型在冠心病风险预测及临床方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能机器学习python
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究方法与创新点二、大模型预测冠心病风险原理与方法2.1数据收集与预处理2.1.1数据来源2.1.2数据清洗与整理2.2特征工程2.2.1特征提取2.2.2特征选择与优化2.3模型选择与训练2.3.1常用模型介绍2.3.2模型训练过程三、术前风险预测与手术方案制定3.1术前风险预测指标与模型应用3.2基于风险预测的手术方案制定3.3案例分析
- ALO蚁狮优化算法:从背景到实战的全面解析
der丸子吱吱吱
智能优化算法ALO算法
目录引言背景2.1蚁狮优化算法的起源2.2自然启发式算法的背景2.3ALO的发展与应用原理3.1蚁狮的生物行为3.2ALO的数学建模3.3算法流程与关键步骤实战应用4.1函数优化问题4.2工程优化案例4.3组合优化与约束优化代码实现与结果分析5.1Python代码实现5.2实验设计与结果分析5.3性能评估与优化建议学习资源6.1工具推荐6.2网站与文献资源6.3ALO与AI结合的方法结论1.引言在
- GreatSQL 为何选择全表扫描而不选索引
数据库mysql
GreatSQL为何选择全表扫描而不选索引1.问题背景在生产环境中,发现某些查询即使有索引,也没有使用索引,反而选择了全表扫描。这种现象的根本原因在于优化器评估索引扫描的成本时,认为使用索引的成本高于全表扫描。2.场景复现2.1环境信息机器IP:192.168.137.120GreatSQL版本:8.0.32-262.2环境准备通过脚本创建了一个包含100万条数据的表,并在age列上创建了索引id
- 如何用大模型评估大模型——PAI-Judge裁判员大语言模型的实现简介
人工智能机器学习大模型llm
背景:为什么需要一个「裁判员大语言模型」?随着大模型(LLM)技术的爆发式应用,如何快速、客观评估模型回复质量成为行业痛点。对于回答客观问题的LLM,目前业内已经有比较成熟的数据集进行效果评测与模型打榜。但是如何对一个开放式生成LLM进行效果评估,尤其在知识问答、客服对话、内容合规、RAG(检索增强生成)等场景中,目前主流的评测方式仍存在一定的局限性:人工标注:成本高昂、效率低下;传统的自动化评估
- 如何评估大语言模型生成文本的质量?
gs80140
AI语言模型人工智能自然语言处理
目录如何评估大语言模型生成文本的质量?1.评估指标概览自动评估指标(AutomaticMetrics)人工评估方法(HumanEvaluation)2.自动评估方法示例(1)计算BLEU分数(2)计算ROUGE分数(3)计算BERTScore(4)使用GPT-4进行评分3.人工评估方法(1)流畅性(Fluency)检查(2)连贯性(Coherence)检查(3)事实准确性(FactualAccur
- 基于Python的智能决策支持系统:实现智能化决策的关键要素
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录基于Python的智能决策支持系统:实现智能化决策的关键要素11.背景介绍2.核心概念与联系数据收集与预处理模型构建与训练决策规则生成与优化决策结果评估与反馈3.核心算法原理具体操作步骤数据挖掘算法机器学习算法优化算法4.数学模型和公式详细讲解举例说明线性回归模型最小二乘法5.项目实践:代码实例和详细解释说明6.实际应用场景金融领域医疗领域供应链管理智能制造7.工具和资源推荐编程语言和开发
- 大模型微调
归一码字
人工智能
文章目录前言一、使用的库二、数据预处理1.引入库2.读入数据3.对数据进行预处理4.转换为json格式文件三,使用算子分析数据并进行数据处理四,划分训练集和测试集五,编写训练脚本开始训练六,进行模型推理人工评估总结前言这是使用知乎评论进行模型微调,让模型输出更加通畅接近人的使用语言一、使用的库modelscope:提供模型、数据集下载能力data-juicer:提供数据集处理能力ms-swift:
- 如何判断自己是否是一位合格的项目经理?
在快速变化的商业环境中,项目经理的角色早已从"任务执行者"进化为"战略推动者"。一位合格的项目经理不仅需要具备扎实的专业知识,更需要在复杂环境中协调资源、化解冲突并推动目标达成。本文将从项目经理的能力模型、项目全流程的关键环节评估标准以及自我检验方法三个维度,系统性地探讨如何判断自身是否胜任这一角色。一、项目经理的黄金三角能力模型硬技能基石(30%)体系化知识结构:掌握PMBOK七大知识领域(范围
- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- 车辆检测与识别:车辆分类_(9).车辆分类模型的评估与优化
zhubeibei168
机器人(二)分类数据挖掘人工智能计算机视觉机器学习视频监控
车辆分类模型的评估与优化在车辆检测与识别领域,车辆分类模型的评估与优化是确保模型性能和可靠性的关键步骤。本节将详细介绍如何评估车辆分类模型的性能,并提供一些优化技术,以提高模型的准确性和效率。模型评估指标1.准确率(Accuracy)准确率是最直观的评估指标,表示分类器正确分类的样本占总样本的比例。然而,在不平衡数据集上,准确率可能具有误导性。fromsklearn.metricsimportac
- 【数学建模】TOPSIS法简介及应用
烟锁池塘柳0
数学建模数学建模算法
文章目录TOPSIS法的基本原理TOPSIS法的基本步骤TOPSIS法的应用总结在多目标决策分析中,我们常常需要在多个选择中找到一个最优解。TOPSIS(TechniqueforOrderPreferencebySimilaritytoIdealSolution)法是一个广泛应用的决策方法,基于理想解与负理想解的距离来评估各个选项的优劣。本文将简要介绍TOPSIS法的基本原理、步骤以及其在实际决策
- 基于大模型的腮腺多形性腺瘤全周期诊疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2研究现状与趋势二、大模型预测原理与方法2.1大模型概述2.2数据收集与预处理2.3模型训练与优化三、术前预测与评估3.1肿瘤特征预测3.2风险评估3.3案例分析四、术中方案制定与实施4.1手术方案选择4.2面神经保护策略4.3麻醉方案确定五、术后恢复与并发症预测5.1恢复情况预测5.2并发症风险预测5.3案例分析六、术后护理与康复6.1护理措施6.2康复训练6
- 项目经理面试全攻略:从底层能力拆解到高通过率话术
在竞争激烈的职场中,项目经理岗位的面试堪称“综合能力大考”——既要展现系统化的方法论,又要传递真实的领导力,还要让考官相信你能在复杂环境中推动结果落地。据PMI(美国项目管理协会)调查,82%的优秀项目经理在面试中能清晰呈现“业务价值-团队协作-风险控制”的三角能力模型。本文从能力拆解、面试准备、实战话术三个维度,揭秘项目经理面试通关法则。一、项目经理面试的四大核心能力雷达图面试官通过以下维度评估
- 项目经理的情商革命:从流程管家到团队灵魂的进化之路
在硅谷某头部AI公司的项目复盘会上,技术总监突然摔掉手中的报告:“这种反人类的进度要求,你们PM除了会催进度还懂什么?”会议室陷入死寂时,项目经理Lisa平静起身:“我理解各位连续加班三周的疲惫,上周四发现Tom在工位睡着时,我就该叫停这个冲刺——这是我的失职。现在请大家一起重新评估优先级,我申请将上线日期延后两周。”这段对话后,团队自愿启动“996攻坚”,最终提前3天交付。这个真实案例揭示了一个
- 2025健康保障新选择 众托帮用“互助力量”为家庭健康加码
创新
近期,《健康中国2030规划纲要》中期评估报告发布,明确提出“鼓励社会互助机制创新,完善多层次医疗保障”。面对医保目录外用药、突发重疾等潜在风险,越来越多家庭开始关注“基础医保+互助保障”的双重防护模式。众托帮作为国内领先的大病互助平台,以灵活参与、透明运作的特点,成为千万家庭的健康“备选项”。**社会互助成健康中国“新解法”**2025年国家多部门联合印发《关于引导社会力量参与医疗保障的指导意见
- A/B测试结果置信度不足时如何决策
测试工具
在A/B测试结果置信度不足时,我们需要综合采用多种策略来做出明智决策。增加样本量、延长测试周期、结合实际业务场景、多指标综合评估。其中,增加样本量尤为关键,因为样本量不足往往导致数据波动较大,易产生假阳性或假阴性,从而使测试结论失去可靠性。通过优化采样策略和科学分配资源,能够有效提升测试数据的稳定性和可信度,为后续决策提供更为坚实的数据支撑。一、A/B测试原理与背景、测试信度的重要性A/B测试作为
- 需求池膨胀时如何科学排序优先级
需求分析
需求池膨胀时如何科学排序优先级主要依靠数据驱动、战略对齐、风险评估**。其中数据驱动是关键,通过收集历史数据、用户反馈与市场趋势,对各项需求进行量化评估,帮助企业在需求膨胀时做出精准排序和资源配置。实践表明,数据驱动的决策可使需求响应速度提升约30%,大大优化资源分配效果。一、需求池膨胀现象的背景与挑战、需求池指的是企业内部或市场上积累的各类需求、项目或功能请求。随着企业发展和市场环境变化,需求池
- 精准测试:软件开发中的高效质量保障利器
霍格沃兹软件测试开发
精准化测试测试用例安全性测试测试覆盖率模块测试selenium测试工具压力测试
全面解析软件测试开发:人工智能测试、自动化测试、性能测试、测试左移、测试右移到DevOps如何驱动持续交付在现代软件开发中,测试效率与测试质量直接影响产品竞争力。精准测试作为一项兼具效率与精度的创新测试方法,已经成为众多企业提升软件质量的重要手段。本篇文章围绕精准测试的落地实施、对质量指标的提升、数据统计与效果评估方法以及如何提高投入产出比进行全面解读,帮助企业掌握精准测试的价值与实践路径。精准测
- 复旦:过程奖励优化多模态推理
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:VisualPRM:AnEffectiveProcessRewardModelforMultimodalReasoning来源:arXiv,2503.10291摘要我们引入了VisualPRM,这是一种具有8B参数的高级多模态过程奖励模型(PRM),它通过Best-of-N(BoN)评估策略提高了现有多模态大型语言模型(MLLM)在不同模型尺度和族之间的推理能力。具体来说,我们的模型提高了三
- 使用 TensorFlow 进行图像处理:深度解析卷积神经网络(CNN)
一碗黄焖鸡三碗米饭
人工智能前沿与实践tensorflow图像处理cnn人工智能机器学习pythonai
目录使用TensorFlow进行图像处理:深度解析卷积神经网络(CNN)1.什么是卷积神经网络(CNN)?CNN的基本结构为什么CNN适合图像处理?2.使用TensorFlow构建CNN2.1环境准备2.2加载并预处理MNIST数据集2.3构建CNN模型2.4编译和训练模型2.5评估模型3.CNN的优化与改进3.1使用数据增强3.2调整网络结构4.CNN在其他图像处理任务中的应用5.总结参考文献在
- UI自动化测试与性能测试
scratchpads
ui鸿蒙harmonyos
在HarmonyOSNEXT应用的开发过程中,除了单元测试和集成测试外,UI自动化测试和性能测试也是不可或缺的环节。UI自动化测试用于确保应用的用户界面能够正确响应用户操作并提供预期的交互体验,而性能测试则评估应用在不同负载条件下的表现,确保其具备良好的响应速度和稳定性。本文将重点讨论如何在鸿蒙操作系统中进行UI自动化测试和性能测试,帮助开发人员提升应用质量。一、UI自动化测试UI自动化测试(UI
- ChatGPT、DeepSeek、GIS与Python机器学习强强联合!地质灾害风险评估、易发性分析、信息化建库及灾后重建
WangYan2022
DeepSeekChatGPT地下水地质灾害DeepSeekChatGPTGIS灾后重建
在地质灾害频繁肆虐的当下,精准开展风险评价刻不容缓。如今,一门极具创新性的教程震撼登场,它将ChatGPT、DeepSeek等前沿技术与GIS、Python以及机器学习深度交融,为学员打造出前所未有的学习体验,助力大家在地质灾害风险评价领域强势突围,一路领先。前沿技术融合,铸就智能学习核心动力教程最闪耀的亮点之一,便是大胆引入了ChatGPT和DeepSeek技术。它们恰似无所不能的“数据魔法师”
- 华为云在工业数字化方面的优势
九河智造云
华为云人工智能云计算制造
华为云在工业数字化领域展现出全方位的优势,为制造业的转型升级提供了强大的助力。一、专业的数字化诊断治理服务华为云的数字化诊断治理专家服务为企业提供全面的深度诊断、成熟度评估、产业升级分析、创新治理和专家咨询等服务。其诊断模型参考国际国内标准,结合多体系理论与华为自身实践,能够精准定位企业运营中的问题点,并提供针对性的解决方案。同时,华为云拥有丰富的诊断团队和案例,基于全国180余个赋能云创新中心、
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo