大体来说,MySQL可以分为Server层和存储引擎层两部分
主要包括连接器、查询缓存、分析器、优化器、执行器等,涵盖MySQL的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等),所有跨存储引擎的功能都在这一层实现,比如存储过程、触发器、视图等。
存储引擎层负责数据的存储和提取。其架构模式是插件式的,支持InnoDB、MyISAM、Memory等多个存储引擎。现在最常用的存储引擎是InnoDB,它从MySQL5.5.5版本开始成为了默认引擎。也就是说我们在create table时不指定表的存储引擎类型,默认会给你设置存储引擎为InnoDB。
本节课演示表的DDL:
CREATE TABLE `test` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=9 DEFAULT CHARSET=utf8;
下面我们重点来分析连接器、查询缓存、分析器、优化器、执行器分别干了哪些事情
我们知道由于MySQL是开源的,他有非常多种类的客户端:Navicat,mysql front,jdbc,SQLyog等,这些客户端要向MySQL发起通信必须先跟Server端建立通信连接,而建立连接的工作就是由连接器完成。
第一步:你会先连接到这个数据库上,这时候接待你的就是连接器。连接器负责跟客户端建立连接、获取权限、维持和管理连接。连接命令一般是这么写的:
mysql ‐h host[数据库地址] ‐u root[用户] ‐p root[密码] ‐P 3306
连接命令中的 mysql 是客户端工具,用来跟服务端建立连接。在完成经典的 TCP 握手后,连接器就要开始认证你的身份,这个时候用的就是你输入的用户名和密码。
这就意味着,一个用户成功建立连接后,即使你用管理员账号对这个用户的权限做了修改,也不会影响已经存在连接的权限。
修改完成后,只有再新建的连接才会使用新的权限设置。
用户的权限表在系统表空间的mysql的user表中。
select * from mysql.user;
CREATE USER 'username'@'host' IDENTIFIED BY 'password'; //创建新用户
grant all privileges on *.* to 'username'@'%'; //赋权限,%表示所有(host)
flush privileges //刷新数据库
update user set password=password(''xinmima'') where user='root';(设置用户名密码)
show grants for root@"%"; 查看当前用户的权限
show processlist; //看谁连接了mysql并且处于什么状态
连接完成后,如果你没有后续的动作,这个连接就处于空闲状态,然后就可以输入show processlist,就可以看到Command列显示为“Sleep”的这一行,就表示现在系统里面有一个空闲连接。
客户端如果长时间不发送command到Server端,连接器就会自动将它断开。这个时间是由参数 wait_timeout 控制的,默认值是 8 小时。
查看wait_timeout
show global variables like "wait_timeout"; //结果默认为28800s
set global wait_timeout=28800; //设置全局服务器关闭非交互连接之前等待活动的秒数
如果在连接被断开之后,客户端再次发送请求的话,就会收到一个错误提醒: Lost connection to MySQL server during query。这时候如果你要继续,就需要重连,然后再执行请求了。
数据库里面:
长连接
是指连接成功后,如果客户端持续有请求,则一直使用同一个连接。
短连接
则是指每次执行完很少的几次查询就断开连接,下次查询再重新建立一个。
开发当中我们大多数时候用的都是长连接,把连接放在Pool内进行管理,但是长连接有些时候会导致 MySQL 占用内存涨得特别快,这是因为 MySQL 在执行过程中临时使用的内存是管理在连接对象里面的。这些资源会在连接断开的时候才释放。所以如果长连接累积下来,可能导致内存占用太大,被系统强行杀掉(OOM),从现象看就是 MySQL 异常重启了。
怎么解决这类问题呢?
常用操作:
show databases; 显示所有数据库
use dbname; 打开数据库:
show tables; 显示数据库mysql中所有的表;
describe user; 显示表mysql数据库中user表的列信息);
连接建立后,你就可以执行 select 语句了。执行逻辑就会来到第二步:查询缓存。
MySQL 拿到一个查询请求后,会先到查询缓存看看,之前是不是执行过这条语句。之前执行过的语句及其结果可能会以key-value 对的形式,被直接缓存在内存中。key 是查询的语句,value 是查询的结果。如果你的查询能够直接在这个缓存中找到 key,那么这个 value 就会被直接返回给客户端。
如果语句不在查询缓存中,就会继续后面的执行阶段。执行完成后,执行结果会被存入查询缓存中。你可以看到,如果查询命中缓存,MySQL 不需要执行后面的复杂操作,就可以直接返回结果,这个效率会很高。
大多数情况查询缓存就是个鸡肋,为什么呢?
因为查询缓存往往弊大于利。查询缓存的失效非常频繁,只要有对一个表的更新,这个表上所有的查询缓存都会被清空。因此很可能你费劲地把结果存起来,还没使用呢,就被一个更新全清空了。对于更新压力大的数据库来说,查询缓存的命中率会非常低。
一般建议大家在静态表里使用查询缓存,什么叫静态表呢?就是一般我们极少更新的表。比如,一个系统配置表、字典表,那这张表上的查询才适合使用查询缓存。好在 MySQL 也提供了这种“按需使用”的方式。你可以将my.cnf参数query_cache_type 设置成 DEMAND。
my.cnf
#query_cache_type有3个值 0代表关闭查询缓存OFF,1代表开启ON,2(DEMAND)代表当sql语句中有SQL_CACHE
关键词时才缓存
query_cache_type=2
这样对于默认的 SQL 语句都不使用查询缓存。而对于你确定要使用查询缓存的语句,可以用 SQL_CACHE 显式指定,像下面这个语句一样:
select SQL_CACHE * from test where ID=5;
查看当前mysql实例是否开启缓存机制
show global variables like "%query_cache_type%";
监控查询缓存的命中率:
show status like'%Qcache%'; //查看运行的缓存信息
运行结果解析:
Qcache_free_blocks:表示查询缓存中目前还有多少剩余的blocks,如果该值显示较大,则说明查询缓存中的内存碎片过多了,可能在一定的时间进行整理。
Qcache_free_memory:查询缓存的内存大小,通过这个参数可以很清晰的知道当前系统的查询内存是否够用,是多了,还是不够用,DBA可以根据实际情况做出调整。
Qcache_hits:表示有多少次命中缓存。我们主要可以通过该值来验证我们的查询缓存的效果。数字越大,缓存效果越理想。
Qcache_inserts: 表示多少次未命中然后插入,意思是新来的SQL请求在缓存中未找到,不得不执行查询处理,执行查询处理后把结果insert到查询缓存中。这样的情况的次数,次数越多,表示查询缓存应用到的比较少,效果也就不理想。当然系统刚启动后,查询缓存是空的,这很正常。
Qcache_lowmem_prunes:该参数记录有多少条查询因为内存不足而被移除出查询缓存。通过这个值,用户可以适当的调整缓存大小。
Qcache_not_cached: 表示因为query_cache_type的设置而没有被缓存的查询数量。
Qcache_queries_in_cache:当前缓存中缓存的查询数量。
Qcache_total_blocks:当前缓存的block数量。
如果没有命中查询缓存,就要开始真正执行语句了。首先,MySQL 需要知道你要做什么,因此需要对 SQL 语句做解析。
分析器先会做“词法分析”。你输入的是由多个字符串和空格组成的一条 SQL 语句,MySQL 需要识别出里面的字符串分别是什么,代表什么。
MySQL 从你输入的"select"这个关键字识别出来,这是一个查询语句。它也要把字符串“T”识别成“表名 T”,把字符串“ID”识别成“列 ID”。
做完了这些识别以后,就要做“语法分析”。根据词法分析的结果,语法分析器会根据语法规则,判断你输入的这个 SQL 语句是否满足 MySQL 语法。
如果你的语句不对,就会收到“You have an error in your SQL syntax”的错误提醒,比如下面这个语句 from 写成了"fro"。
语句:select * fro test where id=1;
错误:ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'fro test where id=1' at line 1
词法分析器分成6个主要步骤完成对sql语句的分析
1.词法分析
2.语法分析
3.语义分析
4.构造执行树
5.生成执行计划
6.计划的执行
下面是SQL词法分析的过程步骤
SQL语句的分析分为词法分析与语法分析,mysql的词法分析由MySQLLex[MySQL自己实现的]完成,语法分析由Bison生成。
那么除了Bison外,Java当中也有开源的词法结构分析工具例如Antlr4,ANTLR从语法生成一个解析器,可以构建和遍历解析树,可以在IDEA工具当中安装插件:antlr v4 grammar plugin。
经过bison语法分析之后,会生成一个这样的语法树
经过了分析器,MySQL 就知道你要做什么了。在开始执行之前,还要先经过优化器的处理。
优化器是在表里面有多个索引的时候,决定使用哪个索引;或者在一个语句有多表关联(join)的时候,决定各个表的连接顺序。比如你执行下面这样的语句,这个语句是执行两个表的 join:
select * from test1 join test2 using(ID) where test1.name=yangguo and test2.name=xiaolongnv;
既可以先从表 test1 里面取出 name=yangguo的记录的 ID 值,再根据 ID 值关联到表 test2,再判断 test2 里面 name的值是否等于 yangguo。
也可以先从表 test2 里面取出 name=xiaolongnv 的记录的 ID 值,再根据 ID 值关联到 test1,再判断 test1 里面 name的值是否等于 yangguo。
这两种执行方法的逻辑结果是一样的,但是执行的效率会有不同,而优化器的作用就是决定选择使用哪一个方案。优化器阶段完成后,这个语句的执行方案就确定下来了,然后进入执行器阶段。如果你还有一些疑问,比如优化器是怎么选择索引的,有没有可能选择错等等。
开始执行的时候,要先判断一下你对这个表 T 有没有执行查询的权限,如果没有,就会返回没有权限的错误,如下所示 (在工程实现上,如果命中查询缓存,会在查询缓存返回结果的时候,做权限验证。查询也会在优化器之前调用 precheck 验证权限)。
select * from test where id=1;
如果有权限,就打开表继续执行。打开表的时候,执行器就会根据表的引擎定义,去使用这个引擎提供的接口。
比如我们这个例子中的表 test 中,ID 字段没有索引,那么执行器的执行流程是这样的:
至此,这个语句就执行完成了。对于有索引的表,执行的逻辑也差不多。第一次调用的是“取满足条件的第一行”这个接口,之后循环取“满足条件的下一行”这个接口,这些接口都是引擎中已经定义好的。你会在数据库的慢查询日志中看到一个rows_examined 的字段,表示这个语句执行过程中扫描了多少行。这个值就是在执行器每次调用引擎获取数据行的时候累加的。在有些场景下,执行器调用一次,在引擎内部则扫描了多行,因此引擎扫描行数跟 rows_examined 并不是完全相同的。
删库是不需要跑路的,因为我们的SQL执行时,会将sql语句的执行逻辑记录在我们的bin-log当中,什么是bin-log呢?
binlog是Server层实现的二进制日志,他会记录我们的cud操作。Binlog有以下几个特点:
如果,我们误删了数据库,可以使用binlog进行归档!要使用binlog归档,首先我们得记录binlog,因此需要先开启MySQL的binlog功能。
# 配置开启binlog
log‐bin=/usr/local/mysql/data/binlog/mysql‐bin
#注意5.7以及更高版本需要配置本项:server‐id=123454(自定义,保证唯一性);
#binlog格式,有3种statement,row,mixed
binlog‐format=ROW
#表示每1次执行写入就与硬盘同步,会影响性能,为0时表示,事务提交时mysql不做刷盘操作,由系统决定
sync‐binlog=1
show variables like '%log_bin%'; 查看bin‐log是否开启
flush logs; 会多一个最新的bin‐log日志
show master status; 查看最后一个bin‐log日志的相关信息
reset master; 清空所有的bin‐log日志
/usr/local/mysql/bin/mysqlbinlog ‐‐no‐defaults /usr/local/mysql/data/binlog/mysql‐bin.000001 #查看binlog内容
binlog里的内容不具备可读性,所以需要我们自己去判断恢复的逻辑点位,怎么观察呢?看重点信息,比如begin,commit这种关键词信息,只要在binlog当中看到了,你就可以理解为begin-commit之间的信息是一个完整的事务逻辑,然后再根据位置position判断恢复即可。binlog内容如下:
数据归档操作
#从bin‐log恢复数据
#恢复全部数据
/usr/local/mysql/bin/mysqlbinlog ‐‐no‐defaults /usr/local/mysql/data/binlog/mysql‐bin.000001 |mysql ‐uroot ‐p test(数据库名)
#恢复指定位置数据
/usr/local/mysql/bin/mysqlbinlog ‐‐no‐defaults ‐‐start‐position="408" ‐‐stop‐position="731"
/usr/local/mysql/data/binlog/mysql‐bin.000001 |mysql ‐uroot ‐p test(数据库)
#恢复指定时间段数据
/usr/local/mysql/bin/mysqlbinlog ‐‐no‐defaults /usr/local/mysql/data/binlog/mysql‐bin.000001 ‐‐stop‐date= "2018‐03‐02 12:00:00" ‐‐start‐date= "2019‐03‐02 11:55:00"|mysql ‐uroot ‐p test(数
据库)
drop procedure if exists tproc;
delimiter $$
create procedure tproc(i int)
begin
declare s int default 1;
declare c char(50) default repeat('a',50);
while s<=i do
start transaction;
insert into test values(null,c);
commit;
set s=s+1;
end while;
end$$
delimiter;
truncate test;
/usr/local/mysql/bin/mysqlbinlog ‐‐no‐defaults /usr/local/mysql/data/binlog/mysql‐
bin.000001 |mysql ‐uroot ‐p test(数据库名)