机器学习-决策树

初步理解思想 想到哪,写到哪,写的比较乱 ~~

  1. 通过计算各个分类的熵,选取熵较小的作为一级分类
  2. 然后计算分类集合的熵,将原集合的熵减去现在的熵(信息增益)进行比较,取信息增益较大的进行分类
  3. 递归第二步,不断进行分类
  4. 训练算法建立树模型之后,使用模型进行分类预估

关键字

  • 熵(信息熵):表示随机变量不确定性的度量。是一种信息的变量方式,表示信息的混乱度。也就说:信息越有序,信息熵越低。


    机器学习-决策树_第1张图片
    image.png
  • 条件熵:


    机器学习-决策树_第2张图片
    image.png
  • 信息增益:在划分数据集前后发生的变化称为信息增益。表示得知特征X的信息而使得类Y的信息的不确定性减少的程度。特征A对训练数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D|A)之差,即 g(D,A)=H(D)−H(D|A) 这个差又称为互信息。信息增益大的特征具有更强的分类能力。

决策树开发流程

  1. 收集数据:可以使用任何方法。
  2. 准备数据:树构造算法 (这里使用的是ID3算法,只适用于标称型数据, 这就是为什么数值型数据必须离散化。 还有其他的树构造算法,比如CART)
  3. 分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期。
  4. 训练算法:构造树的数据结构。
  5. 测试算法:使用训练好的树计算错误率。
  6. 使用算法:此步骤可以适用于任何监督学习任务,而使用决策树可以更好地理解数据的内在含义。
'''构造决策树'''
def createBranch():
'''
此处运用了迭代的思想。 感兴趣可以搜索 迭代 recursion, 甚至是 dynamic programing。
'''
    检测数据集中的所有数据的分类标签是否相同:
        If so return 类标签
        Else:
            寻找划分数据集的最好特征(划分之后信息熵最小,也就是信息增益最大的特征)
            划分数据集
            创建分支节点
                for 每个划分的子集
                    调用函数 createBranch (创建分支的函数)并增加返回结果到分支节点中
            return 分支节点

代码

计算香农熵

def calcShannonEnt(dataSet):
    """calcShannonEnt(calculate Shannon entropy 计算给定数据集的香农熵)
    Args:
        dataSet 数据集
    Returns:
        返回 每一组feature下的某个分类下,香农熵的信息期望
    """
    # -----------计算香农熵的第一种实现方式start--------------------------------------------------------------------------------
    # 求list的长度,表示计算参与训练的数据量
    numEntries = len(dataSet)
    # 下面输出我们测试的数据集的一些信息
    # 例如: numEntries:  5 是下面的代码的输出
    # print type(dataSet), 'numEntries: ', numEntries

    # 计算分类标签label出现的次数
    labelCounts = {}
    # the the number of unique elements and their occurance
    for featVec in dataSet:
        # 将当前实例的标签存储,即每一行数据的最后一个数据代表的是标签
        currentLabel = featVec[-1]
        # 为所有可能的分类创建字典,如果当前的键值不存在,则扩展字典并将当前键值加入字典。每个键值都记录了当前类别出现的次数。
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
        # print '-----', featVec, labelCounts

    # 对于label标签的占比,求出label标签的香农熵
    shannonEnt = 0.0
    for key in labelCounts:
        # 使用所有类标签的发生频率计算类别出现的概率。
        prob = float(labelCounts[key])/numEntries
        # log base 2 
        # 计算香农熵,以 2 为底求对数
        shannonEnt -= prob * log(prob, 2)
        # print '---', prob, prob * log(prob, 2), shannonEnt
    # -----------计算香农熵的第一种实现方式end--------------------------------------------------------------------------------

    # # -----------计算香农熵的第二种实现方式start--------------------------------------------------------------------------------
    # # 统计标签出现的次数
    # label_count = Counter(data[-1] for data in dataSet)
    # # 计算概率
    # probs = [p[1] / len(dataSet) for p in label_count.items()]
    # # 计算香农熵
    # shannonEnt = sum([-p * log(p, 2) for p in probs])
    # # -----------计算香农熵的第二种实现方式end--------------------------------------------------------------------------------
    return shannonEnt

按照给定特征划分数据集

将指定特征的特征值等于 value 的行剩下列作为子数据集。(根据信息增益进行分类)

def chooseBestFeatureToSplit(dataSet):
    """chooseBestFeatureToSplit(选择最好的特征)

    Args:
        dataSet 数据集
    Returns:
        bestFeature 最优的特征列
    """
    # 求第一行有多少列的 Feature, 最后一列是label列嘛
    numFeatures = len(dataSet[0]) - 1
    # 数据集的原始信息熵
    baseEntropy = calcShannonEnt(dataSet)
    # 最优的信息增益值, 和最优的Featurn编号
    bestInfoGain, bestFeature = 0.0, -1
    # iterate over all the features
    for i in range(numFeatures):
        # create a list of all the examples of this feature
        # 获取对应的feature下的所有数据
        featList = [example[i] for example in dataSet]
        # get a set of unique values
        # 获取剔重后的集合,使用set对list数据进行去重
        uniqueVals = set(featList)
        # 创建一个临时的信息熵
        newEntropy = 0.0
        # 遍历某一列的value集合,计算该列的信息熵 
        # 遍历当前特征中的所有唯一属性值,对每个唯一属性值划分一次数据集,计算数据集的新熵值,并对所有唯一特征值得到的熵求和。
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)  # splitDataSet 将指定特征的特征值等于 value 的行剩下列作为子数据集
            # 计算概率
            prob = len(subDataSet)/float(len(dataSet))
            # 计算信息熵
            newEntropy += prob * calcShannonEnt(subDataSet)
        # gain[信息增益]: 划分数据集前后的信息变化, 获取信息熵最大的值
        # 信息增益是熵的减少或者是数据无序度的减少。最后,比较所有特征中的信息增益,返回最好特征划分的索引值。
        infoGain = baseEntropy - newEntropy
        print 'infoGain=', infoGain, 'bestFeature=', i, baseEntropy, newEntropy
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature

创建树的函数

def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    # 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行
    # 第一个停止条件:所有的类标签完全相同,则直接返回该类标签。
    # count() 函数是统计括号中的值在list中出现的次数
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    # 如果数据集只有1列,那么最初出现label次数最多的一类,作为结果
    # 第二个停止条件:使用完了所有特征,仍然不能将数据集划分成仅包含唯一类别的分组。
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)

    # 选择最优的列,得到最优列对应的label含义
    bestFeat = chooseBestFeatureToSplit(dataSet)
    # 获取label的名称
    bestFeatLabel = labels[bestFeat]
    # 初始化myTree
    myTree = {bestFeatLabel: {}}
    # 注:labels列表是可变对象,在PYTHON函数中作为参数时传址引用,能够被全局修改
    # 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list
    del(labels[bestFeat])
    # 取出最优列,然后它的branch做分类
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        # 求出剩余的标签label
        subLabels = labels[:]
        # 遍历当前选择特征包含的所有属性值,在每个数据集划分上递归调用函数createTree()
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
        # print 'myTree', value, myTree
    return myTree

你可能感兴趣的:(机器学习-决策树)