BERT源码分析(PART I)

写在前面

本文首发于公众号:NewBeeNLP

BERT源码分析(PART I)_第1张图片

[email protected]

最近在看paddle相关,于是就打算仔细过一遍百度ERNIE的源码。之前粗看的时候还没有ERNIE2.0、ERNIE-tiny,整体感觉跟BERT也挺类似的,不知道更新了之后会是啥样~看完也会整理跟下面类似的总结,刚好也在研究paddle或ERNIE的同学可以加我一起讨论哈哈哈

原内容@2019.05.16

BERT 模型也出来很久了, 之前有看过论文和一些博客对其做了解读:NLP 大杀器 BERT 模型解读[1],但是一直没有细致地去看源码具体实现。最近有用到就抽时间来仔细看看记录下来,和大家一起讨论。

注意,源码阅读系列需要提前对 NLP 相关知识有所了解,比如 attention 机制、transformer 框架以及 python 和 tensorflow 基础等,关于 BERT 的原理不是本文的重点。

附上关于 BERT 的资料汇总:BERT 相关论文、文章和代码资源汇总[2]

今天要介绍的是 BERT 最主要的模型实现部分-----BertModel,代码位于

  • modeling.py 模块[3]
  • 如有解读不正确,请务必指出~

    1、配置类(BertConfig)

    这部分代码主要定义了 BERT 模型的一些默认参数,另外包括了一些文件处理函数。

    class BertConfig(object):
    """BERT模型的配置类."""

    def __init__(self,
    vocab_size,
    hidden_size=768,
    num_hidden_layers=12,
    num_attention_heads=12,
    intermediate_size=3072,
    hidden_act="gelu",
    hidden_dropout_prob=0.1,
    attention_probs_dropout_prob=0.1,
    max_position_embeddings=512,
    type_vocab_size=16,
    initializer_range=0.02):

    self.vocab_size = vocab_size
    self.hidden_size = hidden_size
    self.num_hidden_layers = num_hidden_layers
    self.num_attention_heads = num_attention_heads
    self.hidden_act = hidden_act
    self.intermediate_size = intermediate_size
    self.hidden_dropout_prob = hidden_dropout_prob
    self.attention_probs_dropout_prob = attention_probs_dropout_prob
    self.max_position_embeddings = max_position_embeddings
    self.type_vocab_size = type_vocab_size
    self.initializer_range = initializer_range

    @classmethod
    def from_dict(cls, json_object):
    """Constructs a `BertConfig` from a Python dictionary of parameters."""
    config = BertConfig(vocab_size=None)
    for (key, value) in six.iteritems(json_object):
    config.__dict__[key] = value
    return config

    @classmethod
    def from_json_file(cls, json_file):
    """Constructs a `BertConfig` from a json file of parameters."""
    with tf.gfile.GFile(json_file, "r") as reader:
    text = reader.read()
    return cls.from_dict(json.loads(text))

    def to_dict(self):
    """Serializes this instance to a Python dictionary."""
    output = copy.deepcopy(self.__dict__)
    return output

    def to_json_string(self):
    """Serializes this instance to a JSON string."""
    return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

    「参数具体含义」

  • vocab_size:词表大小
  • hidden_size:隐藏层神经元数
  • num_hidden_layers:Transformer encoder 中的隐藏层数
  • *num_attention_heads:*multi-head attention 的 head 数
  • intermediate_size:encoder 的“中间”隐层神经元数(例如 feed-forward layer)
  • hidden_act:隐藏层激活函数
  • hidden_dropout_prob:隐层 dropout 率
  • attention_probs_dropout_prob:注意力部分的 dropout
  • max_position_embeddings:最大位置编码
  • type_vocab_size:token_type_ids 的词典大小
  • initializer_range:truncated_normal_initializer 初始化方法的 stdev
  • 这里要注意一点,可能刚看的时候对type_vocab_size这个参数会有点不理解,其实就是在next sentence prediction任务里的Segment ASegment B。在下载的bert_config.json文件里也有说明,默认值应该为 2。参考这个 Issue[4]

    2、获取词向量(Embedding_lookup)

    对于输入 word_ids,返回 embedding table。可以选用 one-hot 或者 tf.gather()

    def embedding_lookup(input_ids,						# word_id:【batch_size, seq_length】
    vocab_size,
    embedding_size=128,
    initializer_range=0.02,
    word_embedding_name="word_embeddings",
    use_one_hot_embeddings=False):

    # 该函数默认输入的形状为【batch_size, seq_length, input_num】
    # 如果输入为2D的【batch_size, seq_length】,则扩展到【batch_size, seq_length, 1】
    if input_ids.shape.ndims == 2:
    input_ids = tf.expand_dims(input_ids, axis=[-1])

    embedding_table = tf.get_variable(
    name=word_embedding_name,
    shape=[vocab_size, embedding_size],
    initializer=create_initializer(initializer_range))

    flat_input_ids = tf.reshape(input_ids, [-1]) #【batch_size*seq_length*input_num】
    if use_one_hot_embeddings:
    one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
    output = tf.matmul(one_hot_input_ids, embedding_table)
    else: # 按索引取值
    output = tf.gather(embedding_table, flat_input_ids)

    input_shape = get_shape_list(input_ids)

    # output:[batch_size, seq_length, num_inputs]
    # 转成:[batch_size, seq_length, num_inputs*embedding_size]
    output = tf.reshape(output,
    input_shape[0:-1] + [input_shape[-1] * embedding_size])
    return (output, embedding_table)

    「参数具体含义」

  • input_ids:word id 【batch_size, seq_length】
  • vocab_size:embedding 词表
  • embedding_size:embedding 维度
  • initializer_range:embedding 初始化范围
  • word_embedding_name:embeddding table 命名
  • use_one_hot_embeddings:是否使用 one-hotembedding
  • Return:【batch_size, seq_length, embedding_size】
  • 3、词向量的后续处理(embedding_postprocessor)

    BERT源码分析(PART I)_第2张图片
    def embedding_postprocessor(input_tensor,				# [batch_size, seq_length, embedding_size]
    use_token_type=False,
    token_type_ids=None,
    token_type_vocab_size=16, # 一般是2
    token_type_embedding_name="token_type_embeddings",
    use_position_embeddings=True,
    position_embedding_name="position_embeddings",
    initializer_range=0.02,
    max_position_embeddings=512, #最大位置编码,必须大于等于max_seq_len
    dropout_prob=0.1):

    input_shape = get_shape_list(input_tensor, expected_rank=3) #【batch_size,seq_length,embedding_size】
    batch_size = input_shape[0]
    seq_length = input_shape[1]
    width = input_shape[2]

    output = input_tensor

    # Segment position信息
    if use_token_type:
    if token_type_ids is None:
    raise ValueError("`token_type_ids` must be specified if"
    "`use_token_type` is True.")
    token_type_table = tf.get_variable(
    name=token_type_embedding_name,
    shape=[token_type_vocab_size, width],
    initializer=create_initializer(initializer_range))
    # 由于token-type-table比较小,所以这里采用one-hot的embedding方式加速
    flat_token_type_ids = tf.reshape(token_type_ids, [-1])
    one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
    token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
    token_type_embeddings = tf.reshape(token_type_embeddings,
    [batch_size, seq_length, width])
    output += token_type_embeddings

    # Position embedding信息
    if use_position_embeddings:
    # 确保seq_length小于等于max_position_embeddings
    assert_op = tf.assert_less_equal(seq_length, max_position_embeddings)
    with tf.control_dependencies([assert_op]):
    full_position_embeddings = tf.get_variable(
    name=position_embedding_name,
    shape=[max_position_embeddings, width],
    initializer=create_initializer(initializer_range))

    # 这里position embedding是可学习的参数,[max_position_embeddings, width]
    # 但是通常实际输入序列没有达到max_position_embeddings
    # 所以为了提高训练速度,使用tf.slice取出句子长度的embedding
    position_embeddings = tf.slice(full_position_embeddings, [0, 0],
    [seq_length, -1])
    num_dims = len(output.shape.as_list())

    # word embedding之后的tensor是[batch_size, seq_length, width]
    # 因为位置编码是与输入内容无关,它的shape总是[seq_length, width]
    # 我们无法把位置Embedding加到word embedding上
    # 因此我们需要扩展位置编码为[1, seq_length, width]
    # 然后就能通过broadcasting加上去了。
    position_broadcast_shape = []
    for _ in range(num_dims - 2):
    position_broadcast_shape.append(1)
    position_broadcast_shape.extend([seq_length, width])
    position_embeddings = tf.reshape(position_embeddings,
    position_broadcast_shape)
    output += position_embeddings

    output = layer_norm_and_dropout(output, dropout_prob)
    return output

    4、构造 attention_mask

    该部分代码的作用是构造 attention 可视域的 attention_mask, 因为每个样本都经过 padding 过程,在做self-attention的是padding的部分不能attend到其他部分上。输入为形状为 [batch_size, from_seq_length,...] 的 padding 好的 input_ids 和形状为 [batch_size, to_seq_length] 的 mask 标记向量。

    def create_attention_mask_from_input_mask(from_tensor, to_mask):
    from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
    batch_size = from_shape[0]
    from_seq_length = from_shape[1]

    to_shape = get_shape_list(to_mask, expected_rank=2)
    to_seq_length = to_shape[1]

    to_mask = tf.cast(
    tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32)

    broadcast_ones = tf.ones(
    shape=[batch_size, from_seq_length, 1], dtype=tf.float32)

    mask = broadcast_ones * to_mask

    return mask

    5、注意力层(attention layer)

    这部分代码是「multi-head attention」的实现,主要来自《Attention is all you need》这篇论文。考虑key-query-value形式的 attention,输入的from_tensor当做是 query, to_tensor当做是 key 和 value,当两者相同的时候即为 self-attention。关于 attention 更详细的介绍可以转到【理解 Attention 机制原理及模型[5]】。

    def attention_layer(from_tensor,   # 【batch_size, from_seq_length, from_width】
    to_tensor, #【batch_size, to_seq_length, to_width】
    attention_mask=None, #【batch_size,from_seq_length, to_seq_length】
    num_attention_heads=1, # attention head numbers
    size_per_head=512, # 每个head的大小
    query_act=None, # query变换的激活函数
    key_act=None, # key变换的激活函数
    value_act=None, # value变换的激活函数
    attention_probs_dropout_prob=0.0, # attention层的dropout
    initializer_range=0.02, # 初始化取值范围
    do_return_2d_tensor=False, # 是否返回2d张量。
    #如果True,输出形状【batch_size*from_seq_length,num_attention_heads*size_per_head】
    #如果False,输出形状【batch_size, from_seq_length, num_attention_heads*size_per_head】
    batch_size=None, #如果输入是3D的,
    #那么batch就是第一维,但是可能3D的压缩成了2D的,所以需要告诉函数batch_size
    from_seq_length=None, # 同上
    to_seq_length=None): # 同上

    def transpose_for_scores(input_tensor, batch_size, num_attention_heads,
    seq_length, width):
    output_tensor = tf.reshape(
    input_tensor, [batch_size, seq_length, num_attention_heads, width])

    output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3]) #[batch_size, num_attention_heads, seq_length, width]
    return output_tensor

    from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
    to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])

    if len(from_shape) != len(to_shape):
    raise ValueError(
    "The rank of `from_tensor` must match the rank of `to_tensor`.")

    if len(from_shape) == 3:
    batch_size = from_shape[0]
    from_seq_length = from_shape[1]
    to_seq_length = to_shape[1]
    elif len(from_shape) == 2:
    if (batch_size is None or from_seq_length is None or to_seq_length is None):
    raise ValueError(
    "When passing in rank 2 tensors to attention_layer, the values "
    "for `batch_size`, `from_seq_length`, and `to_seq_length` "
    "must all be specified.")

    # 为了方便备注shape,采用以下简写:
    # B = batch size (number of sequences)
    # F = `from_tensor` sequence length
    # T = `to_tensor` sequence length
    # N = `num_attention_heads`
    # H = `size_per_head`

    # 把from_tensor和to_tensor压缩成2D张量
    from_tensor_2d = reshape_to_matrix(from_tensor) # 【B*F, hidden_size】
    to_tensor_2d = reshape_to_matrix(to_tensor) # 【B*T, hidden_size】

    # 将from_tensor输入全连接层得到query_layer
    # `query_layer` = [B*F, N*H]
    query_layer = tf.layers.dense(
    from_tensor_2d,
    num_attention_heads * size_per_head,
    activation=query_act,
    name="query",
    kernel_initializer=create_initializer(initializer_range))

    # 将from_tensor输入全连接层得到query_layer
    # `key_layer` = [B*T, N*H]
    key_layer = tf.layers.dense(
    to_tensor_2d,
    num_attention_heads * size_per_head,
    activation=key_act,
    name="key",
    kernel_initializer=create_initializer(initializer_range))

    # 同上
    # `value_layer` = [B*T, N*H]
    value_layer = tf.layers.dense(
    to_tensor_2d,
    num_attention_heads * size_per_head,
    activation=value_act,
    name="value",
    kernel_initializer=create_initializer(initializer_range))

    # query_layer转成多头:[B*F, N*H]==>[B, F, N, H]==>[B, N, F, H]
    query_layer = transpose_for_scores(query_layer, batch_size,
    num_attention_heads, from_seq_length,
    size_per_head)

    # key_layer转成多头:[B*T, N*H] ==> [B, T, N, H] ==> [B, N, T, H]
    key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads,
    to_seq_length, size_per_head)

    # 将query与key做点积,然后做一个scale,公式可以参见原始论文
    # `attention_scores` = [B, N, F, T]
    attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
    attention_scores = tf.multiply(attention_scores,
    1.0 / math.sqrt(float(size_per_head)))

    if attention_mask is not None:
    # `attention_mask` = [B, 1, F, T]
    attention_mask = tf.expand_dims(attention_mask, axis=[1])

    # 如果attention_mask里的元素为1,则通过下面运算有(1-1)*-10000,adder就是0
    # 如果attention_mask里的元素为0,则通过下面运算有(1-0)*-10000,adder就是-10000
    adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0

    # 我们最终得到的attention_score一般不会很大,
    #所以上述操作对mask为0的地方得到的score可以认为是负无穷
    attention_scores += adder

    # 负无穷经过softmax之后为0,就相当于mask为0的位置不计算attention_score
    # `attention_probs` = [B, N, F, T]
    attention_probs = tf.nn.softmax(attention_scores)

    # 对attention_probs进行dropout,这虽然有点奇怪,但是Transforme原始论文就是这么做的
    attention_probs = dropout(attention_probs, attention_probs_dropout_prob)

    # `value_layer` = [B, T, N, H]
    value_layer = tf.reshape(
    value_layer,
    [batch_size, to_seq_length, num_attention_heads, size_per_head])

    # `value_layer` = [B, N, T, H]
    value_layer = tf.transpose(value_layer, [0, 2, 1, 3])

    # `context_layer` = [B, N, F, H]
    context_layer = tf.matmul(attention_probs, value_layer)

    # `context_layer` = [B, F, N, H]
    context_layer = tf.transpose(context_layer, [0, 2, 1, 3])

    if do_return_2d_tensor:
    # `context_layer` = [B*F, N*H]
    context_layer = tf.reshape(
    context_layer,
    [batch_size * from_seq_length, num_attention_heads * size_per_head])
    else:
    # `context_layer` = [B, F, N*H]
    context_layer = tf.reshape(
    context_layer,
    [batch_size, from_seq_length, num_attention_heads * size_per_head])

    return context_layer

    总结一下,attention layer 的主要流程:

  • 对输入的 tensor 进行形状校验,提取batch_size、from_seq_length 、to_seq_length
  • 输入如果是 3d 张量则转化成 2d 矩阵;
  • from_tensor 作为 query, to_tensor 作为 key 和 value,经过一层全连接层后得到 query_layer、key_layer 、value_layer;
  • 将上述张量通过transpose_for_scores转化成 multi-head;
  • 根据论文公式计算 attention_score 以及 attention_probs(注意 attention_mask 的 trick):
  • BERT源码分析(PART I)_第3张图片

    6、Transformer

    接下来的代码就是大名鼎鼎的 Transformer 的核心代码了,可以认为是"Attention is All You Need"原始代码重现。可以参见【原始论文[6]】和【原始代码[7]】。

    def transformer_model(input_tensor,						# 【batch_size, seq_length, hidden_size】
    attention_mask=None, # 【batch_size, seq_length, seq_length】
    hidden_size=768,
    num_hidden_layers=12,
    num_attention_heads=12,
    intermediate_size=3072,
    intermediate_act_fn=gelu, # feed-forward层的激活函数
    hidden_dropout_prob=0.1,
    attention_probs_dropout_prob=0.1,
    initializer_range=0.02,
    do_return_all_layers=False):

    # 这里注意,因为最终要输出hidden_size, 我们有num_attention_head个区域,
    # 每个head区域有size_per_head多的隐层
    # 所以有 hidden_size = num_attention_head * size_per_head
    if hidden_size % num_attention_heads != 0:
    raise ValueError(
    "The hidden size (%d) is not a multiple of the number of attention "
    "heads (%d)" % (hidden_size, num_attention_heads))

    attention_head_size = int(hidden_size / num_attention_heads)
    input_shape = get_shape_list(input_tensor, expected_rank=3)
    batch_size = input_shape[0]
    seq_length = input_shape[1]
    input_width = input_shape[2]

    # 因为encoder中有残差操作,所以需要shape相同
    if input_width != hidden_size:
    raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %
    (input_width, hidden_size))

    # reshape操作在CPU/GPU上很快,但是在TPU上很不友好
    # 所以为了避免2D和3D之间的频繁reshape,我们把所有的3D张量用2D矩阵表示
    prev_output = reshape_to_matrix(input_tensor)

    all_layer_outputs = []
    for layer_idx in range(num_hidden_layers):
    with tf.variable_scope("layer_%d" % layer_idx):
    layer_input = prev_output

    with tf.variable_scope("attention"):
    # multi-head attention
    attention_heads = []
    with tf.variable_scope("self"):
    # self-attention
    attention_head = attention_layer(
    from_tensor=layer_input,
    to_tensor=layer_input,
    attention_mask=attention_mask,
    num_attention_heads=num_attention_heads,
    size_per_head=attention_head_size,
    attention_probs_dropout_prob=attention_probs_dropout_prob,
    initializer_range=initializer_range,
    do_return_2d_tensor=True,
    batch_size=batch_size,
    from_seq_length=seq_length,
    to_seq_length=seq_length)
    attention_heads.append(attention_head)

    attention_output = None
    if len(attention_heads) == 1:
    attention_output = attention_heads[0]
    else:
    # 如果有多个head,将他们拼接起来
    attention_output = tf.concat(attention_heads, axis=-1)

    # 对attention的输出进行线性映射, 目的是将shape变成与input一致
    # 然后dropout+residual+norm
    with tf.variable_scope("output"):
    attention_output = tf.layers.dense(
    attention_output,
    hidden_size,
    kernel_initializer=create_initializer(initializer_range))
    attention_output = dropout(attention_output, hidden_dropout_prob)
    attention_output = layer_norm(attention_output + layer_input)

    # feed-forward
    with tf.variable_scope("intermediate"):
    intermediate_output = tf.layers.dense(
    attention_output,
    intermediate_size,
    activation=intermediate_act_fn,
    kernel_initializer=create_initializer(initializer_range))

    # 对feed-forward层的输出使用线性变换变回‘hidden_size’
    # 然后dropout + residual + norm
    with tf.variable_scope("output"):
    layer_output = tf.layers.dense(
    intermediate_output,
    hidden_size,
    kernel_initializer=create_initializer(initializer_range))
    layer_output = dropout(layer_output, hidden_dropout_prob)
    layer_output = layer_norm(layer_output + attention_output)
    prev_output = layer_output
    all_layer_outputs.append(layer_output)

    if do_return_all_layers:
    final_outputs = []
    for layer_output in all_layer_outputs:
    final_output = reshape_from_matrix(layer_output, input_shape)
    final_outputs.append(final_output)
    return final_outputs
    else:
    final_output = reshape_from_matrix(prev_output, input_shape)
    return final_output
    BERT源码分析(PART I)_第4张图片

    7、函数入口(init)

    BertModel 类的构造函数,有了上面几节的铺垫,我们就可以来实现 BERT 模型了。

    def __init__(self,
    config, # BertConfig对象
    is_training,
    input_ids, # 【batch_size, seq_length】
    input_mask=None, # 【batch_size, seq_length】
    token_type_ids=None, # 【batch_size, seq_length】
    use_one_hot_embeddings=False, # 是否使用one-hot;否则tf.gather()
    scope=None):

    config = copy.deepcopy(config)
    if not is_training:
    config.hidden_dropout_prob = 0.0
    config.attention_probs_dropout_prob = 0.0

    input_shape = get_shape_list(input_ids, expected_rank=2)
    batch_size = input_shape[0]
    seq_length = input_shape[1]
    # 不做mask,即所有元素为1
    if input_mask is None:
    input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32)

    if token_type_ids is None:
    token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)

    with tf.variable_scope(scope, default_name="bert"):
    with tf.variable_scope("embeddings"):
    # word embedding
    (self.embedding_output, self.embedding_table) = embedding_lookup(
    input_ids=input_ids,
    vocab_size=config.vocab_size,
    embedding_size=config.hidden_size,
    initializer_range=config.initializer_range,
    word_embedding_name="word_embeddings",
    use_one_hot_embeddings=use_one_hot_embeddings)

    # 添加position embedding和segment embedding
    # layer norm + dropout
    self.embedding_output = embedding_postprocessor(
    input_tensor=self.embedding_output,
    use_token_type=True,
    token_type_ids=token_type_ids,
    token_type_vocab_size=config.type_vocab_size,
    token_type_embedding_name="token_type_embeddings",
    use_position_embeddings=True,
    position_embedding_name="position_embeddings",
    initializer_range=config.initializer_range,
    max_position_embeddings=config.max_position_embeddings,
    dropout_prob=config.hidden_dropout_prob)

    with tf.variable_scope("encoder"):

    # input_ids是经过padding的word_ids:[25, 120, 34, 0, 0]
    # input_mask是有效词标记:[1, 1, 1, 0, 0]
    attention_mask = create_attention_mask_from_input_mask(
    input_ids, input_mask)

    # transformer模块叠加
    # `sequence_output` shape = [batch_size, seq_length, hidden_size].
    self.all_encoder_layers = transformer_model(
    input_tensor=self.embedding_output,
    attention_mask=attention_mask,
    hidden_size=config.hidden_size,
    num_hidden_layers=config.num_hidden_layers,
    num_attention_heads=config.num_attention_heads,
    intermediate_size=config.intermediate_size,
    intermediate_act_fn=get_activation(config.hidden_act),
    hidden_dropout_prob=config.hidden_dropout_prob,
    attention_probs_dropout_prob=config.attention_probs_dropout_prob,
    initializer_range=config.initializer_range,
    do_return_all_layers=True)

    # `self.sequence_output`是最后一层的输出,shape为【batch_size, seq_length, hidden_size】
    self.sequence_output = self.all_encoder_layers[-1]

    # ‘pooler’部分将encoder输出【batch_size, seq_length, hidden_size】
    # 转成【batch_size, hidden_size】
    with tf.variable_scope("pooler"):
    # 取最后一层的第一个时刻[CLS]对应的tensor, 对于分类任务很重要
    # sequence_output[:, 0:1, :]得到的是[batch_size, 1, hidden_size]
    # 我们需要用squeeze把第二维去掉
    first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)
    # 然后再加一个全连接层,输出仍然是[batch_size, hidden_size]
    self.pooled_output = tf.layers.dense(
    first_token_tensor,
    config.hidden_size,
    activation=tf.tanh,
    kernel_initializer=create_initializer(config.initializer_range))

    总结一哈

    有了以上对源码的深入了解之后,我们在使用 BertModel 的时候就会更加得心应手。举个模型使用的简单栗子:

    # 假设输入已经经过分词变成word_ids. shape=[2, 3]
    input_ids = tf.constant([[31, 51, 99], [15, 5, 0]])
    input_mask = tf.constant([[1, 1, 1], [1, 1, 0]])
    # segment_emebdding. 表示第一个样本前两个词属于句子1,后一个词属于句子2.
    # 第二个样本的第一个词属于句子1, 第二次词属于句子2,第三个元素0表示padding
    # 原始代码是下面这样的,但是感觉么必要用 2,不知道是不是我哪里没理解
    token_type_ids = tf.constant([[0, 0, 1], [0, 2, 0]])

    # 创建BertConfig实例
    config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
    num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)

    # 创建BertModel实例
    model = modeling.BertModel(config=config, is_training=True,
    input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type_ids)


    label_embeddings = tf.get_variable(...)
    #得到最后一层的第一个Token也就是[CLS]向量表示,可以看成是一个句子的embedding
    pooled_output = model.get_pooled_output()
    logits = tf.matmul(pooled_output, label_embeddings)

    在 BERT 模型构建这一块的主要流程:

  • 对输入序列进行 Embedding(三个),接下去就是‘Attention is all you need’的内容了
  • 简单一点就是将 embedding 输入 transformer 得到输出结果;
  • 详细一点就是 embedding --> N *【multi-head attention --> Add(Residual) &Norm--> Feed-Forward --> Add(Residual) &Norm】;
  • 哈,是不是很简单~
  • 源码中还有一些其他的辅助函数,不是很难理解,这里就不再啰嗦。

  • 以上~ 

    本文参考资料

    [1]NLP 大杀器 BERT 模型解读: https://blog.csdn.net/Kaiyuan_sjtu/article/details/83991186

    [2]BERT 相关论文、文章和代码资源汇总: http://www.52nlp.cn/bert-paper-%E8%AE%BA%E6%96%87-%E6%96%87%E7%AB%A0-%E4%BB%A3%E7%A0%81%E8%B5%84%E6%BA%90%E6%B1%87%E6%80%BB

    [3]modeling.py 模块: https://github.com/google-research/bert/blob/master/modeling.py

    [4]参考这个 Issue: https://github.com/google-research/bert/issues/16

    [5]理解 Attention 机制原理及模型: https://blog.csdn.net/Kaiyuan_sjtu/article/details/81806123

    [6]原始论文: https://arxiv.org/abs/1706.03762

    [7]原始代码: https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py

    你可能感兴趣的:(BERT源码分析(PART I))