// 持久化数据到磁盘
DatumWriter userDatumWriter = new SpecificDatumWriter(User.class);
DataFileWriter dataFileWriter = new DataFileWriter(userDatumWriter);
dataFileWriter.create(user1.getSchema(), new File("users.avro"));
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.append(user3);
dataFileWriter.close();
从磁盘读取users.avro并反序列化输出
// 从User反序列化数据
DatumReader userDatumReader = new SpecificDatumReader(User.class);
DataFileReader dataFileReader = new DataFileReader(new File("users.avro"), userDatumReader);
User user = null;
while (dataFileReader.hasNext()) {
user = dataFileReader.next(user);
System.out.println(user);
}
File file = new File("users2.avro");
DatumWriter datumWriter = new GenericDatumWriter(schema);
DataFileWriter dataFileWriter = new DataFileWriter(datumWriter);
dataFileWriter.create(schema, file);
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.close();
从磁盘读取users.avro并反序列化输出
DatumReader datumReader = new GenericDatumReader(schema);
DataFileReader dataFileReader = new DataFileReader(file, datumReader);
GenericRecord user = null;
while (dataFileReader.hasNext()) {
user = dataFileReader.next(user);
System.out.println(user);
}
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var