简介: 本文作者关涛是大数据系统领域的资深专家,在微软(互联网/Azure云事业群)和阿里巴巴(阿里云)经历了大数据发展20年过程中的后15年。本文试从系统架构的角度,就大数据架构热点,每条技术线的发展脉络,以及技术趋势和未解问题等方面做一概述。
作者 | 阿里云计算平台研究员关涛、阿里巴巴项目管理专家王璀
任何一种技术都会经历从阳春白雪到下里巴人的过程,就像我们对计算机的理解从“戴着鞋套才能进的机房”变成了随处可见的智能手机。在前面20年中,大数据技术也经历了这样的过程,从曾经高高在上的 “火箭科技(rocket science)”,成为了人人普惠的技术。
回首来看,大数据发展初期涌现了非常多开源和自研系统,并在同一个领域展开了相当长的一段“红海”竞争期,例如Yarn VS Mesos、Hive VS Spark、Flink VS SparkStreaming VS Apex、Impala VS Presto VS Clickhouse等等。经历激烈竞争和淘汰后,胜出的产品逐渐规模化,并开始占领市场和开发者。
事实上,近几年,大数据领域已经没有再诞生新的明星开源引擎(Clickhouse@2016年开源,PyTorch@2018年开源),以Apache Mesos等项目停止维护为代表,大数据领域进入“后红海”时代:技术开始逐步收敛,进入技术普惠和业务大规模应用的阶段。
本文作者关涛是大数据系统领域的资深专家,在微软(互联网/Azure云事业群)和阿里巴巴(阿里云)经历了大数据发展20年过程中的后15年。本文试从系统架构的角度,就大数据架构热点,每条技术线的发展脉络,以及技术趋势和未解问题等方面做一概述。
值得一提的是,大数据领域仍然处于发展期,部分技术收敛,但新方向和新领域层出不穷。本文内容和个人经历相关,是个人的视角,难免有缺失或者偏颇,同时限于篇幅,也很难全面。仅作抛砖引玉,希望和同业共同探讨。
BigData概念在上世纪90年代被提出,随Google的3篇经典论文(GFS,BigTable,MapReduce)奠基,已经发展了将近20年。这20年中,诞生了包括Google大数据体系,微软Cosmos体系,阿里云的飞天系统,开源Hadoop体系等优秀的系统。这些系统一步步推动业界进入“数字化“和之后的“AI化”的时代。
海量的数据以及其蕴含的价值,吸引了大量投入,极大的推动大数据领域技术。云(Cloud)的兴起又使得大数据技术对于中小企业唾手可得。可以说,大数据技术发展正当时。
从体系架构的角度看,“Shared-Everything”架构演进、湖仓技术的一体化融合、云原生带来的基础设计升级、以及更好的AI支持,是当下平台技术的四个热点。
泛数据领域的系统架构,从传统数据库的Scale-up向大数据的Scale-out发展。从分布式系统的角度,整体架构可以按照Shared-Nothing(也称MPP), Shared-Data, Shared-Everything 三种架构。
大数据平台的数仓体系最初由数据库发展而来,Shared-Nothing(也称MPP)架构在很长一段时间成为主流。随云原生能力增强,Snowflake为代表的Shared-Data逐渐发展起来。而基于DFS和MapReduce原理的大数据体系,设计之初就是Shared-Everything架构。
Shared-Everything架构代表是GoogleBigQuery和阿里云MaxCompute。从架构角度,Shared-Everything架构具备更好的灵活性和潜力,会是未来发展的方向。
(图:三种大数据体系架构)
数据仓库的高性能与管理能力,与数据湖的灵活性,仓和湖的两套体系在相互借鉴与融合。在2020年各个厂商分别提出湖仓一体架构,成为当下架构演进最热的趋势。但湖仓一体架构有多种形态,不同形态尚在演进和争论中。
(图:数据湖与数据仓库借鉴融合)
随着大数据平台技术进入深水区,用户也开始分流,越来越多的中小用户不再自研或自建数据平台,开始拥抱全托管型(通常也是云原生)的数据产品。Snowflake作为这一领域的典型产品,得到普遍认可。面向未来,后续仅会有少量超大规模头部公司采用自建(开源+改进)的模式。
(图:snowflake的云原生架构)
BI作为统计分析类计算,主要是面向过去的总结;AI类计算则具备越来越好的预测未来的能力。在过去五年中,算法类的负载从不到数据中心总容量的5%,提升到30%。AI已经成为大数据领域的一等公民。
在前文(#1.1)介绍的Shared-Nothing、Shared-Data、Shared-Everything 三种架构中,笔者经历过的两套体系(微软Cosmos/Scope体系,和阿里云MaxCompute)均为Shared-Everything架构,因此笔者主要从Shared-Everything架构角度,将大数据领域分成6个叠加的子领域、3个横向领域,共9个领域,具体如下图。
(图:基于 Shared-Everything 大数据体系下的领域架构)
经过多年的发展,每个领域都有一定的进展和沉淀,下面各个章节将概述每个子领域的演进历史、背后驱动力、以及发展方向。
分布式存储,本文特指通用大数据海量分布式存储,是个典型的带状态(Stateful)分布式系统,高吞吐、低成本、容灾、高可用是核心优化方向。(注:下述分代仅为了阐述方便,不代表严格的架构演进。)
第一代,分布式存储的典型代表是谷歌的GFS和Apache Hadoop的HDFS,均为支持多备份的Append-only文件系统。因HDFS早期NameNode在扩展性和容灾方面的短板不能充分满足用户对数据高可用的要求,很多大型公司都有自研的存储系统,如微软的Cosmos(后来演进成Azure Blob Storage),以及阿里巴巴的Pangu系统。HDFS作为开源存储的奠基,其接口成为事实标准,同时HDFS又具备支持其他系统作为背后存储系统的插件化能力。
第二代,基于上述底盘,随海量对象存储需求激增(例如海量的照片),通用的Append-only文件系统之上,封装一层支持海量小对象的元数据服务层,形成对象存储(Object-based Storage),典型的代表包括AWS S3,阿里云OSS。值得一提的是,S3与OSS均可作为标准插件,成为HDFS的事实存储后端。
第三代,以数据湖为代表。随云计算技术的发展,以及(2015年之后)网络技术的进步,存储计算一体的架构逐渐被云原生存储(存储托管化)+ 存储计算分离的新架构取代。这也是数据湖体系的起点。同时因存储计算分离带来的带宽性能问题并未完全解决,在这个细分领域诞生了Alluxio等缓存服务。
第四代,也是当下的趋势,随存储云托管化,底层实现对用户透明,因此存储系统有机会向更复杂的设计方向发展,从而开始向多层一体化存储系统演进。由单一的基于SATA磁盘的系统,向Mem/SSD+SATA (3X备份)+SATA (1.375X为代表的EC备份)+冰存储(典型代表AWS Glacier)等多层系统演进。
如何智能/透明的将数据存储分层,找到成本与性能的Trade-off,是多层存储系统的关键挑战。这领域起步不久,开源领域没有显著好的产品,最好的水平由几个大厂的自研数仓存储系统引领。
(图:阿里巴巴 MaxCompute 的多层一体化存储体系)
在上述系统之上,有一层文件存储格式层(File Format layer),与存储系统本身正交。
存储格式第一代,包含文件格式、压缩和编码技术、以及Index支持等。目前主流两类的存储格式是Apache Parquet和Apache ORC,分别来自Spark和Hive生态。两者均为适应大数据的列式存储格式,ORC在压缩编码上有特长,Parquet在半结构支持上更优。此外另有一种内存格式Apache Arrow,设计体系也属于format,但主要为内存交换优化。
存储格式第二代 - 以 Apache Hudi/Delta Lake 为代表的近实时化存储格式。存储格式早期,是大文件列存储模式,面向吞吐率优化(而非latency)。随着实时化的趋势,上述主流的两个存储模式均向支持实时化演进,Databricks推出了Delta Lake,支持Apache Spark进行近实时的数据ACID操作;Uber推出了Apache Hudi,支持近实时的数据Upsert能力。
尽管二者在细节处理上稍有不同(例如Merge on Read or Write),但整体方式都是通过支持增量文件的方式,将数据更新的周期降低到更短(避免传统Parquet/ORC上的针对更新的无差别FullMerge操作),进而实现近实时化存储。因为近实时方向,通常涉及更频繁的文件Merge以及细粒度元数据支持,接口也更复杂,Delta/Hudi均不是单纯的format、而是一套服务。
存储格式再向实时更新支持方向演进,会与实时索引结合,不再单单作为文件存储格式,而是与内存结构融合形成整体方案。主流的是实时更新实现是基于LogStructuredMergeTree(几乎所有的实时数仓)或者Lucene Index(Elastic Search的格式)的方式。
从存储系统的接口/内部功能看,越简单的接口和功能对应更开放的能力(例如GFS/HDFS),更复杂更高效的功能通常意味着更封闭,并逐步退化成存算一体的系统(例如AWS当家数仓产品RedShift),两个方向的技术在融合。
展望未来,我们看到可能的发展方向/趋势主要有:
1)平台层面,存储计算分离会在两三年内成为标准,平台向托管化和云原生的方向发展。平台内部,精细化的分层成为平衡性能和成本的关键手段(这方面,当前数据湖产品还做得远远不够),AI在分层算法上发挥更大的作用。
2)Format层面,会继续演进,但大的突破和换代很可能取决于新硬件的演进(编码和压缩在通用处理器上的优化空间有限)。
3)数据湖和数仓进一步融合,使得存储不仅仅是文件系统。存储层做的多厚,与计算的边界是什么,仍然是个关键问题。
计算资源管理是分布式计算的核心能力,本质是解决不同种类的负载与资源最优匹配的问题。在“后红海时代”,Google的Borg系统,开源Apache Yarn 依旧是这个领域的关键产品,K8S在大数据计算调度方向上仍在起步追赶。
常见的集群调度架构有:
(图 :The evolution of cluster scheduler architectures by Malte Schwarzkopf)
无论大数据系统的调度系统是基于哪种架构,在海量数据处理流程中,都需要具备以下几个维度的调度能力:
展望未来,我们看到可能的发展方向/趋势主要有:
元数据服务支撑了大数据平台及其之上的各个计算引擎及框架的运行,元数据服务是在线服务,具有高频、高吞吐的特性,需要具备提供高可用性、高稳定性的服务能力,需要具备持续兼容、热升级、多集群(副本)管理等能力。主要包括以下三方面的功能:
第一代数据平台的元数据系统,是Hive的Hive MetaStore(HMS)。在早期版本中HMS元数据服务是Hive的内置服务,元数据更新(DDL)以及DML作业数据读写的一致性和Hive的引擎强耦合,元数据的存储通常托管在MySQL等关系数据库引擎。
随着客户对数据加工处理的一致性(ACID),开放性(多引擎,多数据源),实时性,以及大规模扩展能力的要求越来越高,传统的HMS逐步局限于单集群,单租户,Hive为主的单个企业内部使用,为保障数据的安全可靠,运维成本居高不下。这些缺点在大规模生产环境逐步暴露出来。
第二代元数据系统的代表,有开源体系的Apache IceBerg,和云原生体系的阿里巴巴大数据平台MaxCompute的元数据系统。
IceBerg是开源大数据平台最近两年出现的独立于引擎和存储的“元数据系统”,其要解决的核心问题是大数据处理的ACID,以及表和分区的元数据的规模化之后性能瓶颈。在实现方法上IceBerg的ACID依托了文件系统POSIX的语义,分区的元数据采用了文件方式存储,同时,IceBerg的Table Format独立于Hive MetaStore的元数据接口,因此在引擎的adoption上成本很高,需要各个引擎改造。
基于未来的热点和趋势的分析,开放的,托管的统一元数据服务越来越重要,多家云厂商,都开始提供了DataCatalog服务,支持多引擎对湖和仓数据存储层的访问。
对比第一代与第二代元数据系统:
展望未来,我们看到可能的发展方向/趋势主要有:
原文链接
本文为阿里云原创内容,未经允许不得转载。