Kundu is true tree lover. Tree is a connected graph having N vertices and N-1 edges. Today when he got a tree, he colored each edge with one of either red(r
) or black(b
) color. He is interested in knowing how many triplets(a,b,c) of vertices are there , such that, there is atleast one edge having red color on all the three paths i.e. from vertex a tob, vertex b to c and vertex c to a . Note that (a,b,c), (b,a,c) and all such permutations will be considered as the same triplet.If the answer is greater than 109 + 7, print the answer modulo (%) 109 + 7.
Input Format
The first line contains an integer N, i.e., the number of vertices in tree.
The next N-1 lines represent edges: 2 space separated integers denoting an edge followed by a color of the edge. A color of an edge is denoted by a small letter of English alphabet, and it can be either red(r
) or black(b
).Output Format
Print a single number i.e. the number of triplets.Constraints
1 ≤ N ≤ 105
A node is numbered between 1 to N.Sample Input
5 1 2 b 2 3 r 3 4 r 4 5 b
Sample Output
4
Explanation
Given tree is something like this.
(2,3,4) is one such triplet because on all paths i.e 2 to 3, 3 to 4 and 2 to 4 there is atleast one edge having red color.
(2,3,5), (1,3,4) and (1,3,5) are other such triplets.
Note that (1,2,3) is NOT a triplet, because the path from 1 to 2 does not have an edge with red color.
大体题意:给定一棵树,有两种树边,一种是红色('r'), 另一种是黑色('b'), 在树中找到三个点,使得没两个点之间的路径上都有红色的边,
问存在多少种不同的找法。(a, b, c和 b a c只算一种)
思路:如果有满足要求的3个点a,b,c,若把a到b中的红色边去掉,那么a和b将不连通,同理,如果把a到b,b到c,a到c中
的红色边都去掉,那么a,b,c将属于不同的连通分量。这样就转化为有k堆点,每堆有a[i]个,从这k堆中选3个点,并且满足3个点
两两不在同一堆中,问有多少中取法。因此,就有如下方法:
1 long long sum = 0; 2 for (int i = 1; i <= k; i++) 3 for (int j = i + 1; j <= k; j++) 4 for (int t = j + 1; t <= k; t++) 5 sum += a[i] * a[j] * a[t];
但是复杂度为O(n^3),显然无法满足题目要求。必须优化到O(n)的复杂度。think about it, how to optimize the solution....???
Accepted Code:
1 #include <iostream>
2 #include <cstring>
3 #include <cstdlib>
4 #include <vector>
5 using namespace std; 6
7 const int MOD = 1000000000 + 7; 8 const int MAX_N = 100005; 9 typedef long long LL; 10 vector<int> G[MAX_N]; 11 int N, cmp[MAX_N]; 12 LL cnt[MAX_N], A[MAX_N], B[MAX_N], C[MAX_N]; 13 bool vis[MAX_N]; 14
15 void dfs(int u, int k) { 16 cmp[u] = k; vis[u] = true; 17 for (int i = 0; i < G[u].size(); i++) { 18 int v = G[u][i]; 19 if (!vis[v]) dfs(v, k); 20 } 21 } 22 int main(void) { 23 while (cin >> N) { 24 for (int i = 1; i <= N; i++) G[i].clear(); 25 for (int i = 0; i < N; i++) { 26 int a, b; char c; cin >> a >> b >> c; 27 if (c != 'r') G[a].push_back(b), G[b].push_back(a); 28 } 29 memset(vis, false, sizeof(vis)); 30 int k = 1; //连通分量个数 31 for (int i = 1; i <= N; i++) if (!vis[i]) dfs(i, k++); 32 k--; 33 memset(cnt, 0, sizeof(cnt)); //每个连通分量点的个数 34 for (int i = 1; i <= N; i++) cnt[cmp[i]]++; 35 A[k] = cnt[k]; //A[i] = cnt[i] + cnt[i + 1] + ... + cnt[k] 36 for (int i = k - 1; i >= 3; i--) A[i] = (A[i + 1] + cnt[i]) % MOD; 37 for (int i = 2; i < k; i++) B[i] = (cnt[i] * A[i + 1]) % MOD; //B[i] = cnt[i] * A[i + 1]. 38 C[k - 1] = B[k - 1]; //C[i] = B[i] + B[i + 1] + ... + B[k - 1] 39 for (int i = k - 2; i >= 2; i--) C[i] = (C[i + 1] + B[i]) % MOD; 40 LL sum = 0; 41 for (int i = 1; i <= k - 2; i++) sum = (sum + cnt[i] * C[i + 1]) % MOD; 42 cout << sum << endl; 43 } 44 return 0; 45 }