有这样一个需求,当打开Activity界面时,开始倒计时,倒计时结束后跳转新的界面(思维活跃的朋友可能立马想到如果打开后自动倒计时,就类似于各个APP的欢迎闪屏页面),如下图:
可能觉得直接开启一个包含倒序循环的子线程就ok了,具体实现如下:
activity_main
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/activity_main2"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
tools:context="com.mly.panhouye.handlerdemo.Main2Activity">
<TextView
android:gravity="center"
android:textSize="30sp"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="NO DATA"
android:id="@+id/tv"/>
</LinearLayout>
MainActivity.java
public class Main2Activity extends AppCompatActivity {
TextView tv;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
tv = (TextView) findViewById(R.id.tv);
new Thread(new Runnable() {
@Override
public void run() {
for (int i=5;i>0;i--){
tv.setText(String.valueOf(i));
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//计时结束后跳转到其他界面
startActivity(new Intent(MainActivity.this,MainActivity1.class));
//添加finish方法在任务栈中销毁倒计时界面,使新开界面在回退时直接退出而不是再次返回该界面
finish();
}
}).start();
}
但当点进入界面时,会发现程序奔溃了,logcat中错误日志如下(只有UI线程可以更改UI界面):
由此我们发现在安卓开发中,例如上面的示例,我们常常通过一个线程来完成某些操作,然后同步显示对应的视图控件UI上,通过上面的例子我们也知道了安卓中无法直接通过子线程来进行UI更新操作,对于这种情况,Android提供了一套异步消息处理机制Handler。
Handler一套 Android 消息传递机制,主要是子线程UI更细消息传递给主线程,从而主线程更新UI。
加锁
」,还不如采用「单线程消息队列机制
」使用Handler方式进行异步消息处理主要由Message
,Handler
,MessageQueue
,Looper
四部分组成:
(1)Message
,线程之间传递的消息,用于不同线程之间的数据交互。Message中的what字段用来标记区分多个消息,arg1、arg2
字段用来传递int类型
的数据,obj
可以传递任意类型
的字段。
(2)Handler
,用于发送和处理消息。其中的sendMessage
()用来发送消息,handleMessage
()用于消息处理,进行相应的UI操作。
(3)MessageQueue
,消息队列(先进先出
),用于存放Handler发送的消息,一个线程只有一个消息队列。
(4)Looper
,可以理解为消息队列的管理者,当发现MessageQueue
中存在消息,Looper就会将消息传递到handleMessage
()方法中,同样,一个线程只有一个Looper。
Handler机制的工作流程主要包括4个步骤:
线程(Thread)、循环器(Looper)、处理者(Handler)之间的对应关系如下:
1个线程(Thread)
只能绑定 1个循环器(Looper)
,但可以有多个处理者(Handler)
1个循环器(Looper)
可绑定多个处理者(Handler)
1个处理者(Handler)
只能绑定1个循环器(Looper)
Handler机制 中有3个重要的类:
下面的源码分析将根据 Handler的使用步骤进行
Handler.sendMessage()
、使用Handler.post()
/**
* 此处以 匿名内部类 的使用方式为例
*/
// 步骤1:在主线程中 通过匿名内部类 创建Handler类对象
private Handler mhandler = new Handler(){
// 通过复写handlerMessage()从而确定更新UI的操作
@Override
public void handleMessage(Message msg) {
...// 需执行的UI操作
}
};
// 步骤2:创建消息对象
Message msg = Message.obtain(); // 实例化消息对象
msg.what = 1; // 消息标识
msg.obj = "AA"; // 消息内容存放
// 步骤3:在工作线程中 通过Handler发送消息到消息队列中
// 多线程可采用AsyncTask、继承Thread类、实现Runnable
mHandler.sendMessage(msg);
// 步骤4:开启工作线程(同时启动了Handler)
// 多线程可采用AsyncTask、继承Thread类、实现Runnable
步骤1:在主线程中 通过匿名内部类 创建Handler类对象
/**
* 具体使用
*/
private Handler mhandler = new Handler(){
// 通过复写handlerMessage()从而确定更新UI的操作
@Override
public void handleMessage(Message msg) {
...// 需执行的UI操作
}
};
/**
* 源码分析:Handler的构造方法
* 作用:初始化Handler对象 & 绑定线程
* 注:
* a. Handler需绑定 线程才能使用;绑定后,Handler的消息处理会在绑定的线程中执行
* b. 绑定方式 = 先指定Looper对象,从而绑定了 Looper对象所绑定的线程(因为Looper对象本已绑定了对应线程)
* c. 即:指定了Handler对象的 Looper对象 = 绑定到了Looper对象所在的线程
*/
public Handler() {
this(null, false);
// ->>分析1
}
/**
* 分析1:this(null, false) = Handler(null,false)
*/
public Handler(Callback callback, boolean async) {
...// 仅贴出关键代码
// 1. 指定Looper对象
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
// Looper.myLooper()作用:获取当前线程的Looper对象;若线程无Looper对象则抛出异常
// 即 :若线程中无创建Looper对象,则也无法创建Handler对象
// 故 若需在子线程中创建Handler对象,则需先创建Looper对象
// 注:可通过Loop.getMainLooper()可以获得当前进程的主线程的Looper对象
// 2. 绑定消息队列对象(MessageQueue)
mQueue = mLooper.mQueue;
// 获取该Looper对象中保存的消息队列对象(MessageQueue)
// 至此,保证了handler对象 关联上 Looper对象中MessageQueue
}
从上面可看出:
Handler
对象时,则通过 构造方法
自动关联当前线程的Looper对象
& 对应的消息队列对象(MessageQueue)
,从而自动绑定了 实现创建Handler对象操作的线程那么,当前线程的Looper对象 & 对应的消息队列对象(MessageQueue) 是什么时候创建的呢?
创建Looper对象
主要通过方法:Looper.prepareMainLooper
()、Looper.prepare
();创建消息队列对象
(MessageQueue)方法:创建Looper对象时则会自动创建,即:创建循环器对象(Looper)的同时,会自动创建消息队列对象(MessageQueue)。/**
* 源码分析1:Looper.prepare()
* 作用:为当前线程(子线程) 创建1个循环器对象(Looper),同时也生成了1个消息队列对象(MessageQueue)
* 注:需在子线程中手动调用该方法
*/
public static final void prepare() {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
// 1. 判断sThreadLocal是否为null,否则抛出异常
//即 Looper.prepare()方法不能被调用两次 = 1个线程中只能对应1个Looper实例
// 注:sThreadLocal = 1个ThreadLocal对象,用于存储线程的变量
sThreadLocal.set(new Looper(true));
// 2. 若为初次Looper.prepare(),则创建Looper对象 & 存放在ThreadLocal变量中
// 注:Looper对象是存放在Thread线程里的
// 源码分析Looper的构造方法->>分析a
}
/**
* 分析a:Looper的构造方法
**/
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
// 1. 创建1个消息队列对象(MessageQueue)
// 即 当创建1个Looper实例时,会自动创建一个与之配对的消息队列对象(MessageQueue)
mRun = true;
mThread = Thread.currentThread();
}
/**
* 源码分析2:Looper.prepareMainLooper()
* 作用:为 主线程(UI线程) 创建1个循环器对象(Looper),同时也生成了1个消息队列对象(MessageQueue)
* 注:该方法在主线程(UI线程)创建时自动调用,即 主线程的Looper对象自动生成,不需手动生成
*/
// 在Android应用进程启动时,会默认创建1个主线程(ActivityThread,也叫UI线程)
// 创建时,会自动调用ActivityThread的1个静态的main()方法 = 应用程序的入口
// main()内则会调用Looper.prepareMainLooper()为主线程生成1个Looper对象
/**
* 源码分析:main()
**/
public static void main(String[] args) {
... // 仅贴出关键代码
Looper.prepareMainLooper();
// 1. 为主线程创建1个Looper对象,同时生成1个消息队列对象(MessageQueue)
// 方法逻辑类似Looper.prepare()
// 注:prepare():为子线程中创建1个Looper对象
ActivityThread thread = new ActivityThread();
// 2. 创建主线程
Looper.loop();
// 3. 自动开启 消息循环 ->>下面将详细分析
}
总结:
1、创建主线程时,会自动调用ActivityThread
的1个静态的main
();而main()内则会调用Looper.prepareMainLooper
()为主线程生成1个Looper对象,同时也会生成其对应的MessageQueue对象
2、根据Handler的作用(在主线程更新UI),故Handler实例的创建场景 主要在主线程
3、生成Looper & MessageQueue
对象后,则会自动进入
消息循环:Looper.loop
(),即又是另外一个隐式操作。
此处主要分析的是Looper类中的loop()方法
/**
* 源码分析: Looper.loop()
* 作用:消息循环,即从消息队列中获取消息、分发消息到Handler
* 特别注意:
* a. 主线程的消息循环不允许退出,即无限循环
* b. 子线程的消息循环允许退出:调用消息队列MessageQueue的quit()
*/
public static void loop() {
...// 仅贴出关键代码
// 1. 获取当前Looper的消息队列
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
// myLooper()作用:返回sThreadLocal存储的Looper实例;若me为null 则抛出异常
// 即loop()执行前必须执行prepare(),从而创建1个Looper实例
final MessageQueue queue = me.mQueue;
// 获取Looper实例中的消息队列对象(MessageQueue)
// 2. 消息循环(通过for循环)
for (;;) {
// 2.1 从消息队列中取出消息
Message msg = queue.next();
if (msg == null) {
return;
}
// next():取出消息队列里的消息
// 若取出的消息为空,则线程阻塞
// ->> 分析1
// 2.2 派发消息到对应的Handler
msg.target.dispatchMessage(msg);
// 把消息Message派发给消息对象msg的target属性
// target属性实际是1个handler对象
// ->>分析2
// 3. 释放消息占据的资源
msg.recycle();
}
}
/**
* 分析1:queue.next()
* 定义:属于消息队列类(MessageQueue)中的方法
* 作用:出队消息,即从 消息队列中 移出该消息
*/
Message next() {
...// 仅贴出关键代码
// 该参数用于确定消息队列中是否还有消息
// 从而决定消息队列应处于出队消息状态 or 等待状态
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
// nativePollOnce方法在native层,若是nextPollTimeoutMillis为-1,此时消息队列处于等待状态
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
// 出队消息,即 从消息队列中取出消息:按创建Message对象的时间顺序
if (msg != null) {
if (now < msg.when) {
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// 取出了消息
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// 若 消息队列中已无消息,则将nextPollTimeoutMillis参数设为-1
// 下次循环时,消息队列则处于等待状态
nextPollTimeoutMillis = -1;
}
......
}
.....
}
}// 回到分析原处
/**
* 分析2:dispatchMessage(msg)
* 定义:属于处理者类(Handler)中的方法
* 作用:派发消息到对应的Handler实例 & 根据传入的msg作出对应的操作
*/
public void dispatchMessage(Message msg) {
// 1. 若msg.callback属性不为空,则代表使用了post(Runnable r)发送消息
// 则执行handleCallback(msg),即回调Runnable对象里复写的run()
// 上述结论会在讲解使用“post(Runnable r)”方式时讲解
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
// 2. 若msg.callback属性为空,则代表使用了sendMessage(Message msg)发送消息(即此处需讨论的)
// 则执行handleMessage(msg),即回调复写的handleMessage(msg) ->> 分析3
handleMessage(msg);
}
}
/**
* 分析3:handleMessage(msg)
* 注:该方法 = 空方法,在创建Handler实例时复写 = 自定义消息处理方式
**/
public void handleMessage(Message msg) {
... // 创建Handler实例时复写
}
总结:
消息出队 + 分发给对应的Handler实例
dispatchMessage
(msg)进行分发,最终回调复写的handleMessage
(Message msg),从而实现 消息处理 的操作dispatchMessage(msg)
),会进行1次发送方式的判断:
msg.callback属性不为空
,则代表使用了post(Runnable r)
发送消息,则直接回调Runnable
对象里复写的run()
msg.callback属性为空
,则代表使用了sendMessage(Message msg)
发送消息,则回调复写的handleMessage(msg)
图表总结如下:
/**
* 具体使用
*/
Message msg = Message.obtain(); // 实例化消息对象
msg.what = 1; // 消息标识
msg.obj = "AA"; // 消息内容存放
/**
* 源码分析:Message.obtain()
* 作用:创建消息对象
* 注:创建Message对象可用关键字new 或 Message.obtain()
*/
public static Message obtain() {
// Message内部维护了1个Message池,用于Message消息对象的复用
// 使用obtain()则是直接从池内获取
synchronized (sPoolSync) {
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
// 建议:使用obtain()”创建“消息对象,避免每次都使用new重新分配内存
}
// 若池内无消息对象可复用,则还是用关键字new创建
return new Message();
}
多线程的实现方式:AsyncTask、继承Thread类、实现Runnable
/**
* 具体使用
*/
mHandler.sendMessage(msg);
/**
* 源码分析:mHandler.sendMessage(msg)
* 定义:属于处理器类(Handler)的方法
* 作用:将消息 发送 到消息队列中(Message ->> MessageQueue)
*/
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
// ->>分析1
}
/**
* 分析1:sendMessageDelayed(msg, 0)
**/
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
// ->> 分析2
}
/**
* 分析2:sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis)
**/
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
// 1. 获取对应的消息队列对象(MessageQueue)
MessageQueue queue = mQueue;
// 2. 调用了enqueueMessage方法 ->>分析3
return enqueueMessage(queue, msg, uptimeMillis);
}
/**
* 分析3:enqueueMessage(queue, msg, uptimeMillis)
**/
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
// 1. 将msg.target赋值为this
// 即 :把 当前的Handler实例对象作为msg的target属性
msg.target = this;
// 请回忆起上面说的Looper的loop()中消息循环时,会从消息队列中取出每个消息msg,然后执行msg.target.dispatchMessage(msg)去处理消息
// 实际上则是将该消息派发给对应的Handler实例
// 2. 调用消息队列的enqueueMessage()
// 即:Handler发送的消息,最终是保存到消息队列->>分析4
return queue.enqueueMessage(msg, uptimeMillis);
}
/**
* 分析4:queue.enqueueMessage(msg, uptimeMillis)
* 定义:属于消息队列类(MessageQueue)的方法
* 作用:入队,即 将消息 根据时间 放入到消息队列中(Message ->> MessageQueue)
* 采用单链表实现:提高插入消息、删除消息的效率
*/
boolean enqueueMessage(Message msg, long when) {
...// 仅贴出关键代码
synchronized (this) {
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
// 判断消息队列里有无消息
// a. 若无,则将当前插入的消息 作为队头 & 若此时消息队列处于等待状态,则唤醒
if (p == null || when == 0 || when < p.when) {
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
// b. 判断消息队列里有消息,则根据 消息(Message)创建的时间 插入到队列中
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p;
prev.next = msg;
}
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
// 之后,随着Looper对象的无限消息循环
// 不断从消息队列中取出Handler发送的消息 & 分发到对应Handler
// 最终回调Handler.handleMessage()处理消息
总结
Handler发送消息的本质 = 为该消息定义target属性(即本身实例对象) & 将消息入队到绑定线程的消息队列中。具体如下:
// 步骤1:在主线程中创建Handler实例
private Handler mhandler = new mHandler();
// 步骤2:在工作线程中 发送消息到消息队列中 & 指定操作UI内容
// 需传入1个Runnable对象
mHandler.post(new Runnable() {
@Override
public void run() {
... // 需执行的UI操作
}
});
// 步骤3:开启工作线程(同时启动了Handler)
// 多线程可采用AsyncTask、继承Thread类、实现Runnable
实际上,该方式与方式1中的Handler.sendMessage
()工作原理相同、源码分析类似,下面将主要讲解不同之处
/**
* 具体使用
*/
private Handler mhandler = new Handler();
// 与方式1的使用不同:此处无复写Handler.handleMessage()
/**
* 源码分析:Handler的构造方法
* 作用:
* a. 在此之前,主线程创建时隐式创建Looper对象、MessageQueue对象
* b. 初始化Handler对象、绑定线程 & 进入消息循环
* 此处的源码分析类似方式1,此处不作过多描述
*/
消息对象的创建 = 内部 根据Runnable对象而封装
参考下一节(6.4.3)
/**
* 具体使用
* 需传入1个Runnable对象、复写run()从而指定UI操作
*/
mHandler.post(new Runnable() {
@Override
public void run() {
... // 需执行的UI操作
}
});
/**
* 源码分析:Handler.post(Runnable r)
* 定义:属于处理者类(Handler)中的方法
* 作用:定义UI操作、将Runnable对象封装成消息对象 & 发送 到消息队列中(Message ->> MessageQueue)
* 注:
* a. 相比sendMessage(),post()最大的不同在于,更新的UI操作可直接在重写的run()中定义
* b. 实际上,Runnable并无创建新线程,而是发送 消息 到消息队列中
*/
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
// getPostMessage(r) 的源码分析->>分析1
// sendMessageDelayed()的源码分析 ->>分析2
}
/**
* 分析1:getPostMessage(r)
* 作用:将传入的Runable对象封装成1个消息对象
**/
private static Message getPostMessage(Runnable r) {
// 1. 创建1个消息对象(Message)
Message m = Message.obtain();
// 注:创建Message对象可用关键字new 或 Message.obtain()
// 建议:使用Message.obtain()创建,
// 原因:因为Message内部维护了1个Message池,用于Message的复用,使用obtain()直接从池内获取,从而避免使用new重新分配内存
// 2. 将 Runable对象 赋值给消息对象(message)的callback属性
m.callback = r;
// 3. 返回该消息对象
return m;
} // 回到调用原处
/**
* 分析2:sendMessageDelayed(msg, 0)
* 作用:实际上,从此处开始,则类似方式1 = 将消息入队到消息队列,
* 即 最终是调用MessageQueue.enqueueMessage()
**/
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
// 请看分析3
}
/**
* 分析3:sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis)
**/
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
// 1. 获取对应的消息队列对象(MessageQueue)
MessageQueue queue = mQueue;
// 2. 调用了enqueueMessage方法 ->>分析3
return enqueueMessage(queue, msg, uptimeMillis);
}
/**
* 分析4:enqueueMessage(queue, msg, uptimeMillis)
**/
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
// 1. 将msg.target赋值为this
// 即 :把 当前的Handler实例对象作为msg的target属性
msg.target = this;
// 请回忆起上面说的Looper的loop()中消息循环时,会从消息队列中取出每个消息msg,然后执行msg.target.dispatchMessage(msg)去处理消息
// 实际上则是将该消息派发给对应的Handler实例
// 2. 调用消息队列的enqueueMessage()
// 即:Handler发送的消息,最终是保存到消息队列
return queue.enqueueMessage(msg, uptimeMillis);
}
// 注:实际上从分析2开始,源码 与 sendMessage(Message msg)发送方式相同
从上面的分析可看出:
Runnable
对象而封装
;sendMessage(Message msg)
。下面,我们重新回到步骤1前的隐式操作2:消息循环,即Looper类中的loop()方法
/**
* 源码分析: Looper.loop()
* 作用:消息循环,即从消息队列中获取消息、分发消息到Handler
* 特别注意:
* a. 主线程的消息循环不允许退出,即无限循环
* b. 子线程的消息循环允许退出:调用消息队列MessageQueue的quit()
*/
public static void loop() {
...// 仅贴出关键代码
// 1. 获取当前Looper的消息队列
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
// myLooper()作用:返回sThreadLocal存储的Looper实例;若me为null 则抛出异常
// 即loop()执行前必须执行prepare(),从而创建1个Looper实例
final MessageQueue queue = me.mQueue;
// 获取Looper实例中的消息队列对象(MessageQueue)
// 2. 消息循环(通过for循环)
for (;;) {
// 2.1 从消息队列中取出消息
Message msg = queue.next();
if (msg == null) {
return;
}
// next():取出消息队列里的消息
// 若取出的消息为空,则线程阻塞
// 2.2 派发消息到对应的Handler
msg.target.dispatchMessage(msg);
// 把消息Message派发给消息对象msg的target属性
// target属性实际是1个handler对象
// ->>分析1
// 3. 释放消息占据的资源
msg.recycle();
}
}
/**
* 分析1:dispatchMessage(msg)
* 定义:属于处理者类(Handler)中的方法
* 作用:派发消息到对应的Handler实例 & 根据传入的msg作出对应的操作
*/
public void dispatchMessage(Message msg) {
// 1. 若msg.callback属性不为空,则代表使用了post(Runnable r)发送消息(即此处需讨论的)
// 则执行handleCallback(msg),即回调Runnable对象里复写的run()->> 分析2
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
// 2. 若msg.callback属性为空,则代表使用了sendMessage(Message msg)发送消息(即此处需讨论的)
// 则执行handleMessage(msg),即回调复写的handleMessage(msg)
handleMessage(msg);
}
}
/**
* 分析2:handleCallback(msg)
**/
private static void handleCallback(Message message) {
message.callback.run();
// Message对象的callback属性 = 传入的Runnable对象
// 即回调Runnable对象里复写的run()
}
至此,你应该明白使用 Handler.post()
的工作流程与Handler.sendMessage()
类似,区别在于:
Runnable
对象 封装消息对象Runnable
对象的run
()关于使用 Handler.post
()的源码解析完毕,总结如下:
首先来看看构造函数
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed;
mPtr = nativeInit();
}
构造函数之上定义了很多native方法
private native static long nativeInit();
private native static void nativeDestroy(long ptr);// 阻塞
private native static void nativeWake(long ptr); // 唤醒
private native static boolean nativeIsPolling(long ptr);
private native static void nativeSetFileDescriptorEvents(long ptr, int fd, int events);
native之上定义了几类数据结构,Message、ArrayList、SparseArray、数组
Message mMessages; // 头结点
private final ArrayList<IdleHandler> mIdleHandlers = new ArrayList<IdleHandler>();
private SparseArray<FileDescriptorRecord> mFileDescriptorRecords;
private IdleHandler[] mPendingIdleHandlers;
Message有如下公有属性,供程序员调用:
public int what;//消息标示,
public int arg1; //简单int类型数据
public int arg2;//简单int类型数据
public Object obj;//简单Object类型数据
public Messenger replyTo;//跨进程信使
public int sendingUid = -1;//Messenger消息标示
Message有如下私有属性,用途如下:
/*package*/ static final int FLAG_IN_USE = 1 << 0;//正在使用中
/*package*/ static final int FLAG_ASYNCHRONOUS = 1 << 1;//消息同步标识
/*package*/ static final int FLAGS_TO_CLEAR_ON_COPY_FROM = FLAG_IN_USE;//
/*package*/ int flags;//消息执行标识
/*package*/ long when;//执行时间
/*package*/ Bundle data;//装载的数据
/*package*/ Handler target;//目标载体
/*package*/ Runnable callback;//任务线程
/*package*/ Message next;//消息链表,下一个消息
private static final Object sPoolSync = new Object();//锁对象
private static Message sPool;//消息池
private static int sPoolSize = 0;//消息池大小
private static final int MAX_POOL_SIZE = 50;//消息池最大消息数常量
private static boolean gCheckRecycle = true;//循环检查
Message的源码,我们可以得出如下结论,Message是一种链表结构
,每个Message持有以下信息:
Message
的时间 when
来有序得插入 MessageQueue
中,可以看出 MessageQueue
实际上是一个链表维护的有序队列
,只不过是按照 Message 的执行时间来排序
。看到这里,思路似乎终止了,我们跟随Handler、MessQueue的脚步,只看到了Message被插入到MessageQueue的私有队列中。那我们产生的Message什么时候会背消费呢?
接下来我们看看Looper吧!
在任何线程要开启Loop,都要用Looper.prepare()+Looper.looper()
的方式。
main
方法,也是通过这种方式开启loop的。与子线程细微不同的是,主线程开启looper
用的是prepareMainLooper
。private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
Looper构造函数做了两件事情,初始化消息队列MessageQueue对象,记录当前线程信息。
/**
* Return the Looper object associated with the current thread. Returns
* null if the calling thread is not associated with a Looper.
*/
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
可以看到myLooper
是从threadLocal
中取出Looper
对象。在Looper
类中定义了如下变量sThreadLocal
、mQueue
、sMainLooper
、mThread
// sThreadLocal.get() will return null unless you've called prepare().
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
private static Looper sMainLooper; // guarded by Looper.class
final MessageQueue mQueue;
final Thread mThread;
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
prepare
就是 new
出一个 Looper
。核心之处在于将 new
出的 Looper
设置到了线程本地变量 sThreadLocal
中。也就是说创建的 Looper 与当前线程发生了绑定。
Looper#prepareMainLooper原理
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
prepareMainLooper只有在APP进程启动的时候有用,并不推荐开发者调用这个函数。
Looper
对象Looper
,是否启动而来Looper.prepare
Looper
中取出对应的MessageQueue
,主线程Looper
就取出主线程的MessageQueue
,子线程就取出子线程MessageQueue
MessageQueue
中取出Message
Message.target
属性,即handler
,调用Message
绑定好的handler.dispatchMessage
,处理消息。也就是说,Message最终交由与Message绑定的Handler处理。Looper只是负责无限循环+从MessageQueue中读取
。
1个简单 “更新UI操作” 的案例,主布局文件相同 = 1个用于展示的TextView,具体如下:
布局代码:activity_main.xml
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center"
tools:context="com.example.carson_ho.handler_learning.MainActivity">
<TextView
android:id="@+id/show"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="" />
</RelativeLayout>
public class MainActivity extends AppCompatActivity {
public TextView mTextView;
public Handler mHandler;
// 步骤1:(自定义)新创建Handler子类(继承Handler类) & 复写handleMessage()方法
class Mhandler extends Handler {
// 通过复写handlerMessage() 从而确定更新UI的操作
@Override
public void handleMessage(Message msg) {
// 根据不同线程发送过来的消息,执行不同的UI操作
// 根据 Message对象的what属性 标识不同的消息
switch (msg.what) {
case 1:
mTextView.setText("执行了线程1的UI操作");
break;
case 2:
mTextView.setText("执行了线程2的UI操作");
break;
}
}
}
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mTextView = (TextView) findViewById(R.id.show);
// 步骤2:在主线程中创建Handler实例
mHandler = new Mhandler();
// 采用继承Thread类实现多线程演示
new Thread() {
@Override
public void run() {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// 步骤3:创建所需的消息对象
Message msg = Message.obtain();
msg.what = 1; // 消息标识
msg.obj = "A"; // 消息内存存放
// 步骤4:在工作线程中 通过Handler发送消息到消息队列中
mHandler.sendMessage(msg);
}
}.start();
// 步骤5:开启工作线程(同时启动了Handler)
// 此处用2个工作线程展示
new Thread() {
@Override
public void run() {
try {
Thread.sleep(6000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// 通过sendMessage()发送
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 2; //消息的标识
msg.obj = "B"; // 消息的存放
// b. 通过Handler发送消息到其绑定的消息队列
mHandler.sendMessage(msg);
}
}.start();
}
}
public class MainActivity extends AppCompatActivity {
public TextView mTextView;
public Handler mHandler;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mTextView = (TextView) findViewById(R.id.show);
// 步骤1:在主线程中 通过匿名内部类 创建Handler类对象
mHandler = new Handler(){
// 通过复写handlerMessage()从而确定更新UI的操作
@Override
public void handleMessage(Message msg) {
// 根据不同线程发送过来的消息,执行不同的UI操作
switch (msg.what) {
case 1:
mTextView.setText("执行了线程1的UI操作");
break;
case 2:
mTextView.setText("执行了线程2的UI操作");
break;
}
}
};
// 采用继承Thread类实现多线程演示
new Thread() {
@Override
public void run() {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// 步骤3:创建所需的消息对象
Message msg = Message.obtain();
msg.what = 1; // 消息标识
msg.obj = "A"; // 消息内存存放
// 步骤4:在工作线程中 通过Handler发送消息到消息队列中
mHandler.sendMessage(msg);
}
}.start();
// 步骤5:开启工作线程(同时启动了Handler)
// 此处用2个工作线程展示
new Thread() {
@Override
public void run() {
try {
Thread.sleep(6000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// 通过sendMessage()发送
// a. 定义要发送的消息
Message msg = Message.obtain();
msg.what = 2; //消息的标识
msg.obj = "B"; // 消息的存放
// b. 通过Handler发送消息到其绑定的消息队列
mHandler.sendMessage(msg);
}
}.start();
}
}
public class MainActivity extends AppCompatActivity {
public TextView mTextView;
public Handler mHandler;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mTextView = (TextView) findViewById(R.id.show);
// 步骤1:在主线程中创建Handler实例
mHandler = new Handler();
// 步骤2:在工作线程中 发送消息到消息队列中 & 指定操作UI内容
new Thread() {
@Override
public void run() {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
// 通过psot()发送,需传入1个Runnable对象
mHandler.post(new Runnable() {
@Override
public void run() {
// 指定操作UI内容
mTextView.setText("执行了线程1的UI操作");
}
});
}
}.start();
// 步骤3:开启工作线程(同时启动了Handler)
// 此处用2个工作线程展示
new Thread() {
@Override
public void run() {
try {
Thread.sleep(6000);
} catch (InterruptedException e) {
e.printStackTrace();
}
mHandler.post(new Runnable() {
@Override
public void run() {
mTextView.setText("执行了线程2的UI操作");
}
});
}
}.start();
}
}
1、Android异步通信:这是一份 全面、详细的Handler机制学习攻略
2、Handler介绍
3、Android百问百答-《那些年被问过的Handler原理》
4、ANDROID中HANDLER使用浅析
5、都 2021 年了,还有人在研究 Handler?
6、Android异步通信:详解 Handler 内存泄露的原因