常用矩阵求导公式

常用矩阵求导公式

常见矩阵求导公式:

公式1

d x T d x = I             d x d x T = I \frac{\text{d}x^T}{\text{d}x}=I\ \ \ \ \ \ \ \ \ \ \ \frac{\text{d}x}{\text{d}x^T}=I dxdxT=I           dxTdx=I


公式2

d x T A d x = A           d A x d x T = A \frac{\text{d}x^TA}{\text{d}x}=A\ \ \ \ \ \ \ \ \ \frac{\text{d}Ax}{\text{d}x^T}=A dxdxTA=A         dxTdAx=A


公式3

d A x d x = A T           d x A d x = A T \frac{\text{d}Ax}{\text{d}x}=A^T\ \ \ \ \ \ \ \ \ \frac{\text{d}xA}{\text{d}x}=A^T dxdAx=AT         dxdxA=AT


公式4

∂ u ∂ x T = ( ∂ u T ∂ x ) T \frac{\partial u}{\partial x^T}=\left( \frac{\partial u^T}{\partial x} \right) ^T xTu=(xuT)T


公式5

∂ u T v ∂ x = ∂ u T ∂ x v + ∂ v T ∂ x u T \frac{\partial u^Tv}{\partial x}=\frac{\partial u^T}{\partial x}v+\frac{\partial v^T}{\partial x}u^T xuTv=xuTv+xvTuT


公式6
∂ u v T ∂ x = ∂ u ∂ x v T + u ∂ v T ∂ x \frac{\partial uv^T}{\partial x}=\frac{\partial u}{\partial x}v^T+u\frac{\partial v^T}{\partial x} xuvT=xuvT+uxvT


公式7

d x T x d x = 2 x \frac{\text{d}x^Tx}{\text{d}x}=2x dxdxTx=2x
d x T A x d x = ( A + A T ) x \frac{\text{d}x^TAx}{\text{d}x}=\left( A+A^T \right) x dxdxTAx=(A+AT)x


公式8

∂ A B ∂ x = ∂ A ∂ x B + A ∂ B ∂ x \frac{\partial AB}{\partial x}=\frac{\partial A}{\partial x}B+A\frac{\partial B}{\partial x} xAB=xAB+AxB


公式9

∂ u T X v ∂ X = u v T \frac{\partial u^TXv}{\partial X}=uv^T XuTXv=uvT


公式10

∂ u T X T X u ∂ X = 2 X u u T \frac{\partial u^TX^TXu}{\partial X}=2Xuu^T XuTXTXu=2XuuT


公式11
∂ [ ( X u − v ) T ( X u − v ) ] ∂ X = 2 ( X u − v ) u T \frac{\partial \left[ \left( Xu-v \right) ^T\left( Xu-v \right) \right]}{\partial X}=2\left( Xu-v \right) u^T X[(Xuv)T(Xuv)]=2(Xuv)uT


你可能感兴趣的:(大学学习记录)