- PyTorch深度学习框架60天进阶学习计划第14天:循环神经网络进阶
凡人的AI工具箱
深度学习pytorch学习人工智能pythonAI编程
PyTorch深度学习框架60天进阶学习计划第14天:循环神经网络进阶在深度学习处理序列数据时,循环神经网络(RNN)家族的模型扮演着至关重要的角色。今天,我们将深入探讨循环神经网络的进阶内容,包括BiLSTM的工作机制、注意力机制的数学原理,以及Transformer编码层的实现。目录BiLSTM的双向信息流机制LSTM回顾BiLSTM架构解析时序特征融合策略BiLSTM实现与案例注意力机制原理
- AI芯片概述-分类、应用、技术(APU、CPU、DPU、GPU、NPU和TPU)及厂家
一码当前
AI基础人工智能分类数据挖掘
写这篇文章的起因是老板想了解下AI芯片(NPU/GPU区别等),他不是搞技术那一挂的,所以就简单整理下,留作记录,顺便分享给各位。文章目录一、AI芯片是什么?二、AI芯片分类1.Training(训练)2.Inference(推理)三、AI芯片应用领域四、AI芯片技术路线五、APU、CPU、DPU、GPU、NPU和TPU六、AI芯片厂家一、AI芯片是什么?AI芯片:针对人工智能算法做了特殊加速设计
- AI图片翻译助手 v1.0.0.2 绿色版
ssdsadasdjhhsd1
lua
链接:https://pan.quark.cn/s/00616a73bca9AI图片翻译助手是一款AI图片翻译软件,可以帮助用户根据图片翻译内容,支持多语言并行翻译,支持数十种语言翻译,使用非常方便,有需要的用户可以下载试试。1.多语言支持支持中文翻译到越南文泰文马来文印尼语西班牙语葡萄牙语日语2.使用googleAI翻译神经网络,瞬间多语言并行翻译3.软件可以免费使用推广给小伙伴即可,如果你喜欢
- 1.6 从 GPT-1 到 GPT-3.5:一路的风云变幻
少林码僧
AI大模型应用实战专栏gptgpt-3
从GPT-1到GPT-3.5:一路的风云变幻人工智能的进步一直是科技领域的一个重要话题,而在自然语言处理(NLP)领域,GPT(GenerativePre-trainedTransformer)系列模型的发布,标志着一个又一个技术突破。从2018年发布的GPT-1到2022年推出的GPT-3.5,OpenAI的每一次更新都在推动着人工智能的发展,改变了我们与计算机互动的方式。本文将带你一起回顾GP
- 《探秘课程蒸馏体系“三阶训练法”:解锁知识层级递进式迁移的密码》
人工智能深度学习
在人工智能与教育科技深度融合的时代,如何高效地实现知识传递与能力提升,成为众多学者、教育工作者以及技术专家共同探索的课题。课程蒸馏体系中的“三阶训练法”,作为一种创新的知识迁移模式,正逐渐崭露头角,为解决这一难题提供了全新的思路。从概念上讲,课程蒸馏体系借鉴了机器学习中知识蒸馏的思想,将复杂、庞大的知识体系进行提炼和压缩,使其能够更有效地被学习者吸收。而“三阶训练法”作为该体系的核心,通过精心设计
- 使用 DeepSeek 训练属于自己写小说的模型
xinxiyinhe
DeepSeek人工智能python
如果你想使用DeepSeek训练一个专门用于写小说的模型,以下是详细的指导指南。DeepSeek是一个强大的深度学习框架,支持自然语言处理任务。我们将基于DeepSeek的API和工具,结合HuggingFace的Transformers库,完成模型的训练和部署。详细指南:使用DeepSeek训练写小说模型1.环境准备1.1安装必要的库确保你已经安装了以下Python库:pipinstalltor
- Qwen1.5-7B-实现RAG应用详细步骤
大数据追光猿
大模型数据库AI编程语言模型人工智能深度学习
1.准备工作1.1安装依赖确保你的环境中安装了以下工具和库:Python:建议使用Python3.8或更高版本。PyTorch:用于运行深度学习模型。Transformers:HuggingFace提供的库,支持加载和运行预训练模型。FAISS:用于向量检索的高效库。GPTQ支持库:如auto-gptq或gptqmodel。安装命令运行以下命令安装所需的Python包:pipinstalltorc
- GPT-4 Turbo的重大升级与深远影响
CodeJourney.
算法数据库人工智能
在人工智能飞速发展的浪潮中,OpenAI推出的GPT-4Turbo犹如一颗璀璨的新星,引发了全球的广泛关注。这一版本不仅是技术层面的常规迭代,更是一次具有深远意义的重大突破,从性能提升到功能拓展,再到应用场景的延伸,都展现出了令人瞩目的变革。性能飞跃:速度与成本的双重优化GPT-4Turbo最直观的升级体现在速度上。OpenAI对模型架构和计算资源进行了深度优化,使其响应速度大幅提升。在实际应用中
- 在 DeepSeek-R1 的本地指导下部署 DeepSeek Coder(第 1 部分)
csdn_aspnet
DeepSeekwindowsDeepSeekwindows
驱动器使用CursorAI和ClaudeSonet已经有一段时间了,这绝对是一次令人兴奋的体验。自从我将人工智能驱动的编码辅助功能纳入我的工作流程后,我的工作效率轻松提升了近50%。事实上,我发现这些人工智能工具不仅加快了琐碎的编码任务,还鼓励我探索我可能忽略的新库和框架。同时,作为一名开源爱好者,我始终有一个挥之不去的想法:“如果我能够使用开源模型获得类似的结果,同时又能完全控制我的数据,那会怎
- 一文搞懂AI专用名词,全面解析人工智能术语
码上飞扬
人工智能
友情提示:本文内容由银河易创(https://ai.eaigx.com)AI创作平台DeepSeek-v3模型生成,文中所有概念解释均有AI生成,仅供参考。引言人工智能(AI)作为当今科技领域的热门话题,已经渗透到我们生活的方方面面。然而,对于初学者或非技术背景的读者来说,AI领域中的各种专业术语和缩写常常令人困惑。本文旨在通过系统化的梳理,帮助读者快速掌握AI中的关键名词,从基础概念到进阶术语,
- 智能教育:DeepSeek在个性化学习中的应用与代码实现
Evaporator Core
#DeepSeek快速入门#深度学习人工智能学习
个性化学习是教育技术领域的核心目标之一,它通过分析学生的学习行为、兴趣和能力,提供定制化的学习内容和路径,以最大化学习效果。DeepSeek作为人工智能技术的引领者,正在通过其强大的算法和数据处理能力,推动个性化学习的创新应用。本文将结合代码实现,深入探讨DeepSeek在个性化学习中的应用。一、个性化学习系统:从数据到定制化内容个性化学习的核心在于根据学生的学习行为数据,生成定制化的学习内容。D
- GitHub每日最火火火项目(3.7)
FutureUniant
github日推github人工智能计算机视觉音视频ai
ai-hedge-fund项目介绍:ai-hedge-fund是由virattt开发的项目,本质上是一个将人工智能技术应用于对冲基金领域的团队或平台。在金融市场中,对冲基金旨在通过各种策略获取超额收益,而人工智能具备强大的数据分析和预测能力,二者结合能为投资决策带来新的思路和方法。该项目可能运用机器学习、深度学习等人工智能算法,对大量的金融数据进行深入分析,包括股票、债券、期货等市场的历史价格、交
- AI大模型报告 | 《中国数字人发展报告(2024)》(完整版PDF免费附下载)
AI大模型_学习君
人工智能pdfAI大模型RAG大模型技术中国数字人发展报告2024数字人
世界上的相遇都是久别重逢~数字人是通过多种数字智能技术创建,具备人类外观形象、声音语言、肢体动作与思维功能等特征的数字智能体。在技术层面,数字人通过数字建模手段实现,涵盖计算机图形学、动作捕捉、图形渲染、语音合成、深度学习等多项技术。当前,数字人正成为人工智能活跃的应用落地入口,对大数据、智能终端、具身智能等产业链接度、嵌入度、融合度较强,或将成为下一代互联网活跃的交互界面之一。公开数据显示,目前
- 新冠病毒感染人数预测(基于回归的神经网络项目)
|柳贯一|
深度学习回归神经网络数据挖掘
写在前面:我们做的事情:我们的目的是要得到一个好的模型,这个模型能够让我们预测好的y首先拿到一批数据,这批数据有x和准确的y,我们让x通过模型得到预测的y,让预测的y与准确的y去计算差距loss,根据这个差距loss去不断改变优化模型。一、神经网络项目的流程1、数据预处理:(深度学习最主要的数据处理,要先拿到数据)使用CovidDataset类加载和处理数据。根据all_feature参数选择特征
- 论分布式存储系统架构设计
一休哥助手
架构软考系统架构师分布式
一、引言随着大数据、人工智能和物联网等技术的快速发展,数据存储需求呈现爆发式增长。传统集中式的存储系统架构逐渐暴露出性能瓶颈、可靠性差、扩展性不足等问题,无法满足日益增长的数据存储需求。在这种背景下,分布式存储系统(DistributedStorageSystem)应运而生。分布式存储系统通过将数据分散在多台设备上,实现了负载均衡、可靠性提升以及高效的数据访问,成为现代大规模数据存储的主流方案。本
- 通用型AI智能体Manus:技术突破与OpenManus云平台革命
Loving_enjoy
实用技巧人工智能
一、通用型AI智能体的进化:Manus的技术突破**在人工智能技术从专用型向通用型跨越的浪潮中,Manus作为新一代通用AI智能体,正重新定义人机协作的边界。其核心价值在于突破了传统AI模型"单一场景适配"的局限,构建了可自主进化、多模态交互、跨领域迁移的智能体系。**1.Manus的四大技术支柱**(1)**元学习驱动的认知框架**Manus采用混合式元学习架构(HybridMeta-Learn
- Node.js调用DeepSeek Api 实现本地智能聊天的简单应用
egekm_sefg
面试学习路线阿里巴巴node.js
在人工智能快速发展的今天,如何快速构建一个智能对话应用成为了开发者们普遍关注的话题。本文将为大家介绍一个基于Node.js的命令行聊天应用,它通过调用硅基流动(SiliconFlow)的API接口,实现了与DeepSeek模型的智能对话功能。这个项目不仅实现了流式响应输出,还提供了对话记录的自动保存功能,是一个非常实用的AI对话工具。代码下载:https://gitee.com/phpervip/
- 车载SerDes芯片的重要性:自动驾驶与智能座舱的神经网络
空间机器人
Serdes知识合集自动驾驶神经网络人工智能
车载SerDes芯片的重要性:自动驾驶与智能座舱的神经网络在智能汽车时代,数据就是“燃料”,而SerDes芯片(串行器/解串器)就是让这些数据以光速奔跑的“血管”。随着自动驾驶(ADAS/ADS)和智能座舱的发展,摄像头、雷达、LiDAR及高清显示屏的数量激增,数据量呈指数级增长。如何高效、低延迟、低误码率地传输这些数据,成为决定自动驾驶安全性和座舱体验的关键问题。这时候,高性能车载SerDes芯
- 基于深度学习的视频修复
SEU-WYL
深度学习dnn深度学习音视频人工智能dnn
基于深度学习的视频修复是一种利用深度学习技术对视频进行处理和优化,以修复视频中的损坏部分、提升视频质量、去除噪声和增强视觉效果的方法。这种技术在电影修复、视频编辑、监控视频增强、自动驾驶和虚拟现实等多个领域具有广泛应用。以下是关于这一领域的系统介绍:1.任务和目标视频修复的主要任务和目标包括:去噪声:去除视频中的噪声,提升视频的视觉质量。去模糊:减少或消除视频中的模糊区域,使视频更清晰。去伪影:消
- 【AI-42】如何调整参数和超参
W Y
人工智能
在机器学习和深度学习中,参数和超参数是两个重要概念,以下是一些常见的参数和超参数及其作用:参数权重(Weight)解释:可以将权重想象成连接不同神经元之间的“桥梁”,其大小决定了一个神经元的输出对下一个神经元的影响程度。权重越大,说明前一个神经元对后一个神经元的影响就越大;权重越小,影响就越小。作用:在模型训练过程中,权重不断调整,使得模型能够学习到输入数据中的各种特征和模式,从而实现对数据的准确
- Python 在 AI 领域的应用:从零构建你的第一个 AI 模型
嵌入式Jerry
Pythonpython人工智能开发语言嵌入式硬件windowsubuntu
引言人工智能(AI)已经成为现代科技的核心,而Python是AI领域最受欢迎的编程语言之一。其强大的库和框架,如TensorFlow、PyTorch、scikit-learn,使AI开发变得更加简单高效。本文将带你深入理解Python在AI中的应用,并通过机器学习(MachineLearning)和深度学习(DeepLearning)的实际示例,讲解如何构建一个AI模型。1.Python为什么适合
- Python自学指南:从入门到进阶(第一天)
Small踢倒coffee_氕氘氚
经验分享笔记python
Python作为一门简洁、易读且功能强大的编程语言,深受初学者和专业开发者的喜爱。无论你是编程新手,还是有一定编程经验想学习新语言,Python都是一个绝佳的选择。本文将为你提供一份详细的Python自学指南,帮助你从入门到进阶。---##一、为什么选择Python?1.**简单易学**:Python语法简洁,接近自然语言,适合初学者快速上手。2.**应用广泛**:Python在数据分析、人工智能
- 深度学习篇---Opencv中的机器学习和深度学习
Ronin-Lotus
深度学习篇图像处理篇深度学习opencv机器学习python
文章目录前言一、OpenCV中的机器学习1.概述2.使用步骤步骤1:准备数据步骤2:创建模型步骤3:训练模型步骤4:预测3.优点简单易用轻量级实时性4.缺点特征依赖性能有限二、OpenCV中的深度学习1.概述图像分类(如ResNet、MobileNet)目标检测(如YOLO、SSD)语义分割(如DeepLab)人脸检测(如OpenFace)2.使用步骤步骤1:加载模型步骤2:准备输入数据步骤3:推
- 【深度学习模型高效部署】tensorRT_Pro深度解读:部署深度学习模型的高效方案
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习深度学习人工智能tensorRT_ProTensorRT高性能推理机器学习模型部署
以下内容将对tensorRT_Pro项目做一个系统的介绍,包括其核心价值、主要功能、应用案例以及关键的示例代码(附详细解释),帮助你快速了解并上手如何基于TensorRT在NVIDIAGPU上实现高性能推理。一、项目概述GitHub-shouxieai/tensorRT_Pro:C++librarybasedontensorrtintegrationtensorRT_Pro是由开发者shouxie
- 神经网络图像识别技术,神经网络如何识别图像
小浣熊的技术
神经网络机器学习深度学习
什么是神经网络神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法
- 人工神经网络的基本属性,神经网络四个基本属性
小浣熊的技术
神经网络机器学习深度学习
什么是神经网络神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法
- 基于YOLOv5的无人机农田监测系统实现与UI界面设计
深度学习&目标检测实战项目
YOLO无人机ui深度学习分类目标检测
一、引言随着无人机技术和深度学习算法的快速发展,农业领域逐渐引入了智能化监测手段。无人机农田监测结合了无人机的高空拍摄能力和计算机视觉技术,能够实时获取农田的图像数据,并对作物生长状态、病虫害检测、土地使用情况等进行智能分析。深度学习中的目标检测技术,如YOLOv5,能够帮助实现精准的农田监测,提供自动化的解决方案。在这篇博客中,我们将介绍如何利用YOLOv5进行无人机农田监测,如何使用图形用户界
- Keras深度学习实战——手写文字识别
鱼弦
机器学习设计类系统深度学习keras人工智能
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)Keras深度学习实战——手写文字识别1.介绍本教程将介绍如何使用Keras深度学习框架进行手写文字识别。手写文字识别是指将手写文字转换为相应的文本,该文本可
- Manus:一夜爆火的“AI全能员工”如何重塑人工智能边界?
阿新-
人工智能人工智能Manus
引言:从“助手”到“执行者”的颠覆性跨越2025年3月6日,一款名为Manus的AI代理突然刷爆技术圈——其封闭测试邀请码在黑市被炒至10万元,甚至引发科技博主集体“求码”热潮。不同于传统AI仅提供建议,Manus能像人类一样自主完成全流程操作:从解压简历生成报告到编写代码部署网站,甚至联动硬件设备。这场技术风暴为何兴起?它将对AI领域带来哪些变革?分析一、Manus的核心突破:从“大
- 基于Simulink的单个PWM信号的傅里叶分析&特定谐波抑制
科研辅导帮
傅立叶分析
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不