点上方计算机视觉联盟获取更多干货
仅作学术分享,不代表本公众号立场,侵权联系删除
转载于:AI干货知识库
AI博士笔记系列推荐
周志华《机器学习》手推笔记正式开源!可打印版本附pdf下载链接
YOLO目标检测算法诞生于2015年6月,从出生的那一天起就是“高精度、高效率、高实用性”目标检测算法的代名词。
在原作者Joseph Redmon博士手中YOLO经历了三代到YOLOv3,今年初Joseph Redmon宣告退出计算机视觉研究界后,YOLOv4、YOLOv5相继而出,且不论谁是正统,这YOLO算法家族在创始人拂袖而出后依然热闹非凡。
本文带领大家细数在此名门之中自带“YOLO”的算法,总计 23 项工作,它们有的使YOLO更快,有的使YOLO更精准,有的扩展到了3D点云、水下目标检测、有的则在FPGA、CPU、树莓派上大显身手,甚至还有的进入了语音处理识别领域。
而几乎所有YOLO系算法都力图保持高精度、高效率、高实用性,这也许就是工业界偏爱YOLO的理由吧!
YOLOv1 开山鼻祖之作
You Only Look Once: Unified, Real-Time Object Detection
作者:Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi
单位:华盛顿大学;Allen Institute for AI;FAIR
论文:( https://arxiv.org/abs/1506.02640 )
引用 | 10222
主页:( https://pjreddie.com/darknet/yolo/ )
时间:2015 年 6 月 8 日
标准版本的YOLO在Titan X 的 GPU 上能达到 45 FPS。更快的 Fast YOLO 检测速度可以达到 155 FPS。
YOLOv2
YOLO9000: Better, Faster, Stronger
作者:Joseph Redmon, Ali Farhadi
单位:华盛顿大学;Allen Institute for AI
论文:( https://arxiv.org/abs/1612.08242 )
引用 | 5168
主页:( https://pjreddie.com/darknet/yolo/ )
时间:2016 年 12 月 25 日
在 YOLO 基础上,保持原有速度的同时提升精度得到YOLOv2,让预测变得更准确(Better),更快速(Faster)。
通过联合训练策略,可实现9000多种物体的实时检测,总体mAP值为19.7。
YOLOv3
YOLOv3: An Incremental Improvement
作者:Joseph Redmon, Ali Farhadi
单位:华盛顿大学
论文:( https://arxiv.org/abs/1804.02767 )
引用 | 3363
主页:( https://pjreddie.com/darknet/yolo/ )
Star | 18.3K
时间:2018 年 4 月 8 日
在320×320 YOLOv3运行22.2ms,28.2 mAP,像SSD一样准确,但速度快三倍。在Titan X上,它在51 ms内实现了57.9的AP50,与RetinaNet在198 ms内的57.5 AP50相当,性能相似但速度快3.8倍。
YOLOv4 目标检测tricks集大成者
YOLOv4: Optimal Speed and Accuracy of Object Detection
作者:Alexey Bochkovskiy;Chien-Yao Wang;Hong-Yuan Mark Liao
单位:(中国台湾)中央研究院
论文:( https://arxiv.org/pdf/2004.10934v1.pdf )
引用 | 17
代码:( https://github.com/AlexeyAB/darknet )
Star | 11.9K
时间:2020 年 4 月 24
在MS COCO 数据集 实现 43.5% AP (65.7% AP50 ), 速度也更快了,在Tesla V100 GPU上 ∼65 FPS!
YOLOv5
2020年6月25日,Ultralytics发布了YOLOV5 的第一个正式版本,号称其性能与YOLO V4不相伯仲,同样也是现今最先进的目标检测技术,并在推理速度上是目前最强。
论文:无
代码:( https://github.com/ultralytics/yolov5 )
Star | 3.5K
Fast YOLO
Fast YOLO: A Fast You Only Look Once System for Real-time Embedded Object Detection in Video
作者:Mohammad Javad Shafiee, Brendan Chywl, Francis Li, Alexander Wong
单位:滑铁卢大学
论文:https://arxiv.org/abs/1709.05943 ( https://arxiv.org/abs/1709.05943 )
引用 | 53
时间:2017 年 9 月 18 日
Complex-YOLO
Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection on Point Clouds
作者:Martin Simon, Stefan Milz, Karl Amende, Horst-Michael Gross
单位:伊尔梅瑙工业大学
论文:( https://arxiv.org/abs/1803.06199 )
引用 | 65
代码:( https://github.com/ghimiredhikura/Complex-YOLOv3(非官方 )
Star | 95(非官方)
代码:(基于 v4 ( https://github.com/maudzung/Complex-YOLOv4-Pytorch(基于 v4 ))
Star | 442(基于 v4)
时间:2018 年 3 月 16 日
基于YOLOv2的一个变种,用于点云3D目标检测。
MV-YOLO
MV-YOLO: Motion Vector-aided Tracking by Semantic Object Detection
作者:Saeed Ranjbar Alvar, Ivan V. Bajić
单位:西蒙弗雷泽大学
论文:( https://arxiv.org/abs/1805.00107 )
引用 | 10
时间:2018 年 4 月 30 日
一种结合压缩视频中的运动信息和YOLO目标检测的目标跟踪算法。
YOLO3D
YOLO3D: End-to-end real-time 3D Oriented Object Bounding Box Detection from LiDAR Point Cloud
作者:Waleed Ali, Sherif Abdelkarim, Mohamed Zahran, Mahmoud Zidan, Ahmad El Sallab
单位:Valeo AI Research, Egypt
论文:( https://arxiv.org/abs/1808.02350 )
引用 | 26
备注:ECCV 2018 Workshop
时间:2018 年 8 月 7 日
YOLO-LITE
YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers
作者:Jonathan Pedoeem, Rachel Huang
单位:佐治亚理工学院等
论文:( https://arxiv.org/abs/1811.05588 )
引用 | 73
代码:( https://reu2018dl.github.io/ )
Star | 336
时间:2018 年 11 月 14 日
YOLO-LITE 是 YOLOv2-tiny 的Web实现,在 MS COCO 2014 和 PASCAL VOC 2007 + 2012 数据集上训练。在 Dell XPS 13 机器上可达到 21 FPS ,VOC 数据集上达到33.57 mAP。
Spiking-YOLO
Spiking-YOLO: Spiking Neural Network for Energy-Efficient Object Detection
作者:Seijoon Kim, Seongsik Park, Byunggook Na, Sungroh Yoon
单位:首尔大学
论文:( https://arxiv.org/abs/1903.06530 )
引用 | 3
备注:AAAI 2020
时间:2019 年 3 月 12 日
该文第一次将脉冲神经网络用于目标检测,虽然精度不高,但相比Tiny_YOLO 耗能更少。(研究意义大于实际应用意义)
DC-SPP-YOLO
DC-SPP-YOLO: Dense Connection and Spatial Pyramid Pooling Based YOLO for Object Detection
作者:Zhanchao Huang, Jianlin Wang
单位:北京化工大学
论文:( https://arxiv.org/abs/1903.08589 )
引用 | 8
时间:2019 年 3 月 20 日
该作提出一种DC-SPP-YOLO(基于YOLO的密集连接和空间金字塔池化技术)的方法来改善YOLOv2的目标检测精度。
SpeechYOLO
SpeechYOLO: Detection and Localization of Speech Objects
作者:Yael Segal, Tzeviya Sylvia Fuchs, Joseph Keshet
单位:巴伊兰大学
论文:( https://arxiv.org/abs/1904.07704 )
引用 | 2
时间:2019 年 4 月 14 日
YOLO算法启发的语音处理识别算法。
SpeechYOLO的目标是在输入信号中定位语句的边界,并对其进行正确分类。受YOLO算法在图像中进行目标检测的启发所提出的方法。
Complexer-YOLO
Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds
作者:Martin Simon, Karl Amende, Andrea Kraus, Jens Honer, Timo Sämann, Hauke Kaulbersch, Stefan Milz, Horst Michael Gross
单位:伊尔梅瑙工业大学等
论文:( https://arxiv.org/abs/1904.07537 )
引用 | 24
时间:2019 年 4 月 16 日
Complex-YOLO的改进版,用于实时点云3D目标检测与跟踪,推断速度加速20%,训练时间减少50%。
SlimYOLOv3
SlimYOLOv3: Narrower, Faster and Better for UAV Real-Time Applications
作者:Pengyi Zhang, Yunxin Zhong, Xiaoqiong Li
单位:北理工
论文:( https://arxiv.org/abs/1907.11093 )
引用 | 18
代码:( https://github.com/PengyiZhang/SlimYOLOv3 )
Star | 953
时间:2019 年 7 月 15 日
该文对YOLOv3的卷积层通道剪枝,大幅削减了模型的计算量(~90.8% decrease of FLOPs)和参数量( ~92.0% decline of parameter size),剪枝后的模型在基本保持原模型的检测精度同时,运行速度约为原来的两倍。
REQ-YOLO
REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for Object Detection on FPGAs
作者:Caiwen Ding, Shuo Wang, Ning Liu, Kaidi Xu, Yanzhi Wang, Yun Liang
单位:北大;东北大学;鹏城实验室
论文:( https://arxiv.org/abs/1909.13396 )
引用 | 14
时间:2019 年 9 月 29 日
Tiny-YOLO的 FPGA 实现,REQ-YOLO速度可高达200~300 FPS!
YOLO Nano
YOLO Nano: a Highly Compact You Only Look Once Convolutional Neural Network for Object Detection
作者:Alexander Wong, Mahmoud Famuori, Mohammad Javad Shafiee, Francis Li, Brendan Chwyl, Jonathan Chung
单位:滑铁卢大学;DarwinAI Corp
论文:( https://arxiv.org/abs/1910.01271 )
引用 | 6
时间:2019 年 10 月 3 日
YOLO Nano 比 Tiny YOLOv2 和 Tiny YOLOv3更小,更快,mAP更高!模型仅4.0MB。在 NVIDIA Jetson Xavier上速度竟高达26.9~48.2 FPS!
xYOLO
xYOLO: A Model For Real-Time Object Detection In Humanoid Soccer On Low-End Hardware
作者:Daniel Barry, Munir Shah, Merel Keijsers, Humayun Khan, Banon Hopman
单位:坎特伯雷大学
论文:( https://arxiv.org/abs/1910.03159 )
引用 | 3
时间:2019 年 10 月 7 日
该工作所提出的 xYOLO 是从 YOLO v3 tiny 变化而来,xYOLO比Tiny-YOLO快了70倍!在树莓派3B上速度9.66 FPS!模型仅0.82 MB大小,这可能是速度最快模型最小的YOLO变种。
IFQ-Tinier-YOLO
IFQ-Net: Integrated Fixed-point Quantization Networks for Embedded Vision
作者:Hongxing Gao, Wei Tao, Dongchao Wen, Tse-Wei Chen, Kinya Osa, Masami Kato
单位:Canon Information Technology (Beijing) Co., LTD;Device Technology Development Headquarters, Canon Inc.
论文:( https://arxiv.org/abs/1911.08076 )
时间:2019 年 11 月 19 日
该工作一部分基于YOLOv2,设计了IFQ-Tinier-YOLO人脸检测器,它是一个定点网络,比Tiny-YOLO减少了256倍的模型大小(246k Bytes)。
DG-YOLO
WQT and DG-YOLO: towards domain generalization in underwater object detection
作者:Hong Liu, Pinhao Song, Runwei Ding
单位:北大;鹏城实验室
论文:( https://arxiv.org/abs/2004.06333 )
时间:2020 年 4 月 14 日
该工作旨在研究水下目标检测数据,因为水下目标的数据比较少,提出了新的水质迁移的数据增广方法和YOLO新变种:DG-YOLO ,该算法由 YOLOv3, DIM 和 IRM penalty 组成。
Poly-YOLO
Poly-YOLO: higher speed, more precise detection and instance segmentation for YOLOv3
作者:Petr Hurtik, Vojtech Molek, Jan Hula, Marek Vajgl, Pavel Vlasanek, Tomas Nejezchleba
单位:奥斯特拉发大学;Varroc Lighting Systems
论文:( https://arxiv.org/abs/2005.13243 )
解读:mAP 提升 40%!YOLO3 改进版—— Poly-YOLO:更快,更精确的检测和实例分割
代码:( https://gitlab.com/irafm-ai/poly-yolo )
时间:2020 年 5 月 27 日
基于YOLOv3,支持实例分割,检测mAP提升40%!
E-YOLO
Expandable YOLO: 3D Object Detection from RGB-D Images
作者:Masahiro Takahashi, Alessandro Moro, Yonghoon Ji, Kazunori Umeda
单位:(日本)中央大学;RITECS Inc
论文:( https://arxiv.org/abs/2006.14837 )
时间:2020 年 6 月 26 日
YOLOv3的变种,构建了一个轻量级的目标检测器,从RGBD-D立体摄像机输入深度和彩色图像。该模型的处理速度为44.35fps(GPU: NVIDIA RTX 2080 and CPU: Intel Core i7 8700K)。
PP-YOLO
PP-YOLO: An Effective and Efficient Implementation of Object Detector
作者:Xiang Long, Kaipeng Deng, Guanzhong Wang, Yang Zhang, Qingqing Dang, Yuan Gao, Hui Shen, Jianguo Ren, Shumin Han, Errui Ding, Shilei Wen
单位:百度
论文:( https://arxiv.org/abs/2007.12099 )
解读:( https://zhuanlan.zhihu.com/p/163565906 )
代码:( https://github.com/PaddlePaddle/PaddleDetection )
时间:2020 年 7 月 23 日
PP-YOLO由在YOLOv3上添加众多tricks“组合式创新”得来,从下图前两列中可看到其使用的技术:
PP-YOLOYOLOv4和谷歌EfficientDet,是更加实用的目标检测算法。
-------------------
END
--------------------
我是王博Kings,985AI博士,华为云专家、CSDN博客专家(人工智能领域优质作者)。单个AI开源项目现在已经获得了2100+标星。现在在做AI相关内容,欢迎一起交流学习、生活各方面的问题,一起加油进步!
我们微信交流群涵盖以下方向(但并不局限于以下内容):人工智能,计算机视觉,自然语言处理,目标检测,语义分割,自动驾驶,GAN,强化学习,SLAM,人脸检测,最新算法,最新论文,OpenCV,TensorFlow,PyTorch,开源框架,学习方法...
这是我的私人微信,位置有限,一起进步!
王博的公众号,欢迎关注,干货多多
王博Kings的系列手推笔记(附高清PDF下载):
博士笔记 | 周志华《机器学习》手推笔记第一章思维导图
博士笔记 | 周志华《机器学习》手推笔记第二章“模型评估与选择”
博士笔记 | 周志华《机器学习》手推笔记第三章“线性模型”
博士笔记 | 周志华《机器学习》手推笔记第四章“决策树”
博士笔记 | 周志华《机器学习》手推笔记第五章“神经网络”
博士笔记 | 周志华《机器学习》手推笔记第六章支持向量机(上)
博士笔记 | 周志华《机器学习》手推笔记第六章支持向量机(下)
博士笔记 | 周志华《机器学习》手推笔记第七章贝叶斯分类(上)
博士笔记 | 周志华《机器学习》手推笔记第七章贝叶斯分类(下)
博士笔记 | 周志华《机器学习》手推笔记第八章集成学习(上)
博士笔记 | 周志华《机器学习》手推笔记第八章集成学习(下)
博士笔记 | 周志华《机器学习》手推笔记第九章聚类
博士笔记 | 周志华《机器学习》手推笔记第十章降维与度量学习
博士笔记 | 周志华《机器学习》手推笔记第十一章稀疏学习
博士笔记 | 周志华《机器学习》手推笔记第十二章计算学习理论
博士笔记 | 周志华《机器学习》手推笔记第十三章半监督学习
博士笔记 | 周志华《机器学习》手推笔记第十四章概率图模型
点分享
点收藏
点点赞
点在看