三个函数都是不扩展维度却改变tensor
维度数值存在的。关于扩展维度查看squeeze和unsqueeze;关于更改维度位置查看transpose和 permute
这两个函数放在一起说比较好。
expand(*sizes) → Tensor
很简单,扩张函数。但是要注意的是:-1 代表了保持不更改该维度的尺寸大小。
>>> x = torch.tensor([[1], [2], [3]])
>>> x.size()
torch.Size([3, 1])
>>> x.expand(3, 4)
tensor([[ 1, 1, 1, 1],
[ 2, 2, 2, 2],
[ 3, 3, 3, 3]])
>>> x.expand(-1, 4) # -1 means not changing the size of that dimension
tensor([[ 1, 1, 1, 1],
[ 2, 2, 2, 2],
[ 3, 3, 3, 3]])
expand_as(other_tensor) → Tensor
self.expand(other_tensor.size())
>>> y=torch.tensor([[2,2],[3,3],[5,5]])
>>> print(y.size())
torch.Size([3, 2])
>>> x.expand_as(y)
tensor([[2, 2],
[3, 3],
[4, 4]])
这个功能类似expand()
主要还是看样例
batch_size = 2
seq_len = 4
embedding_size =8
embedding = torch.rand(1, seq_len, seq_len)) # [1, 4, 4]
repeat_dims = [1] * embedding.dim() # [1,1,1]
repeat_dims[0] = batch_size # [2, 1,1]
embedding = embedding.repeat(*repeat_dim) # [b, 4,4]