opencv学习笔记05

python opencv3图像处理课程学习——像素运算01

算术运算
逻辑运算

1.像素相加

import cv2 as cv
import numpy as np


def add_demo(m1, m2):
    dst = cv.add(m1, m2)  # 将图像m1和图像m2的像素相加
    cv.imshow("add_demo", dst)


src1 = cv.imread("C:/Users/ASUS/Desktop/11/LinuxLogo.jpg")  # 从目录中读取图片
src2 = cv.imread("C:/Users/ASUS/Desktop/11/WindowsLogo.jpg")
cv.namedWindow("image1", cv.WINDOW_AUTOSIZE)  # 通过opencv的GUI将图片显示出来
cv.namedWindow("image2", cv.WINDOW_AUTOSIZE)
cv.imshow("image1", src1)  # 在窗口中将图片显示出来,通过名字“src”找到图片
cv.imshow("image2", src2)
add_demo(src1, src2)
cv.waitKey(0)
cv.destroyAllWindows()

输出:
opencv学习笔记05_第1张图片
opencv学习笔记05_第2张图片
opencv学习笔记05_第3张图片
2.像素相减

import cv2 as cv
import numpy as np


def subtract_demo(m1, m2):
    dst = cv.subtract(m1, m2)  # 将图像m1和图像m2的像素相加
    cv.imshow("subtract_demo", dst)


src1 = cv.imread("C:/Users/ASUS/Desktop/11/LinuxLogo.jpg")  # 从目录中读取图片
src2 = cv.imread("C:/Users/ASUS/Desktop/11/WindowsLogo.jpg")
cv.namedWindow("image1", cv.WINDOW_AUTOSIZE)  # 通过opencv的GUI将图片显示出来
cv.namedWindow("image2", cv.WINDOW_AUTOSIZE)
cv.imshow("image1", src1)  # 在窗口中将图片显示出来,通过名字“src”找到图片
cv.imshow("image2", src2)
subtract_demo(src1, src2)
cv.waitKey(0)
cv.destroyAllWindows()

输出
opencv学习笔记05_第4张图片
3.像素相除

import cv2 as cv
import numpy as np


def divide_demo(m1, m2):
    dst = cv.divide(m1, m2)  # 将图像m1和图像m2的像素相加
    cv.imshow("divide_demo", dst)


src1 = cv.imread("C:/Users/ASUS/Desktop/11/LinuxLogo.jpg")  # 从目录中读取图片
src2 = cv.imread("C:/Users/ASUS/Desktop/11/WindowsLogo.jpg")
cv.namedWindow("image1", cv.WINDOW_AUTOSIZE)  # 通过opencv的GUI将图片显示出来
cv.namedWindow("image2", cv.WINDOW_AUTOSIZE)
cv.imshow("image1", src1)  # 在窗口中将图片显示出来,通过名字“src”找到图片
cv.imshow("image2", src2)
divide_demo(src1, src2)
cv.waitKey(0)
cv.destroyAllWindows()

输出
opencv学习笔记05_第5张图片
4.像素相乘

import cv2 as cv
import numpy as np


def multiply_demo(m1, m2):
    dst = cv.multiply(m1, m2)  # 将图像m1和图像m2的像素相加
    cv.imshow("divide_demo", dst)


src1 = cv.imread("C:/Users/ASUS/Desktop/11/LinuxLogo.jpg")  # 从目录中读取图片
src2 = cv.imread("C:/Users/ASUS/Desktop/11/WindowsLogo.jpg")
cv.namedWindow("image1", cv.WINDOW_AUTOSIZE)  # 通过opencv的GUI将图片显示出来
cv.namedWindow("image2", cv.WINDOW_AUTOSIZE)
cv.imshow("image1", src1)  # 在窗口中将图片显示出来,通过名字“src”找到图片
cv.imshow("image2", src2)
multiply_demo(src1, src2)
cv.waitKey(0)
cv.destroyAllWindows()

输出
opencv学习笔记05_第6张图片
5.计算每个通道均值

import cv2 as cv
import numpy as np


def others(m1, m2):  # 计算每个通道的均值
    M1 = cv.mean(m1)
    M2 = cv.mean(m2)
    print(M1)
    print(M2)


src1 = cv.imread("C:/Users/ASUS/Desktop/11/LinuxLogo.jpg")  # 从目录中读取图片
src2 = cv.imread("C:/Users/ASUS/Desktop/11/WindowsLogo.jpg")
cv.namedWindow("image1", cv.WINDOW_AUTOSIZE)  # 通过opencv的GUI将图片显示出来
cv.namedWindow("image2", cv.WINDOW_AUTOSIZE)
cv.imshow("image1", src1)  # 在窗口中将图片显示出来,通过名字“src”找到图片
cv.imshow("image2", src2)
others(src1, src2)
cv.waitKey(0)
cv.destroyAllWindows()

输出

三个通道分别对应:blue   green   red
(15.0128125, 15.0128125, 15.0128125, 0.0)
(128.05269531250002, 109.60858072916668, 62.55748697916667, 0.0)

6.计算图像均值和方差

import cv2 as cv
import numpy as np


def others(m1, m2):  # 计算每个通道的均值
    M1, dev1 = cv.meanStdDev(m1)
    M2, dev2 = cv.meanStdDev(m2)
    print(M1)
    print(M2)
    print(dev1)
    print(dev2)


src1 = cv.imread("C:/Users/ASUS/Desktop/11/LinuxLogo.jpg")  # 从目录中读取图片
src2 = cv.imread("C:/Users/ASUS/Desktop/11/WindowsLogo.jpg")
cv.namedWindow("image1", cv.WINDOW_AUTOSIZE)  # 通过opencv的GUI将图片显示出来
cv.namedWindow("image2", cv.WINDOW_AUTOSIZE)
cv.imshow("image1", src1)  # 在窗口中将图片显示出来,通过名字“src”找到图片
cv.imshow("image2", src2)
others(src1, src2)
cv.waitKey(0)
cv.destroyAllWindows()

输出

[[15.0128125]
 [15.0128125]
 [15.0128125]]
[[128.05269531]
 [109.60858073]
 [ 62.55748698]]
[[58.14062149]
 [58.14062149]
 [58.14062149]]
[[54.60093646]
 [45.52335089]
 [50.01800277]]

你可能感兴趣的:(opencv,opencv)