列表(元组)基本操作符回顾
len()函数在列表与元组上的使用
示例如下:
names = ['Neo', 'Lily', 'Jack'] length = len(names) print(length) # 执行结果如下 # >>> 3
注意:len()函数可以计算除了数字类型之外的其他所有数据类型的长度
列表(元组)之间的累加与乘法
示例如下:
names = ['Neo', 'Lily', 'Jack'] new_names_01 = names + names print(new_names_01) names = ['Neo', 'Lily', 'Jack'] new_names_01 = names * 2 print(new_names_01) # 输出结果如下: # >>> ['Neo', 'Lily', 'Jack', 'Neo', 'Lily', 'Jack'] # >>> ['Neo', 'Lily', 'Jack', 'Neo', 'Lily', 'Jack']
in 和 not in 在列表(元组)中的用法
in :判断某个成员(元素)是否在该数据结构中,返回结果为布尔值。
not in :判断某个成员(元素)是否不在该数据结构中,返回结果为布尔值。
示例如下:
names = ['Neo', 'Lily', 'Jack'] print(bool('Adam' in names)) print(bool('Adam' not in names)) # 执行结果如下: # >>> False # >>> True
列表常用方法
append() 函数
append()函数的功能:将一个元素添加当当前列表中
append()函数的用法:list_append(new_item) ,new_item为添加进列表的新的元素(成员)
append()函数的注意事项:
- 被添加的元素止水被添加到末尾
- append() 函数是在原有列表的基础上进行添加,不需要额外的添加新的变量
示例如下:
names = ['Neo'] names.append('Jack') print(names) # 执行结果如下: # >>> ['Neo', 'Jack']
a = [1, 2, 3] b = [4, 5, 6] print(a.append(1)) print(a) a.append(b) print(a) # 执行结果如下: # >>> [1, 2, 3, 1] # >>> Node # >>> [1, 2, 3, 1, [4, 5, 6]] a.append(b) 会将整个列表当做一个元素添加进去
这里我们注意到 print(a.append(1)) 返回的是 Node ,这是为什么呢?
原因是append方法只是在恰当的位置修改原来的列表!也就是说,不是返回一个列表,而只是修改原来的列表,所以如果用 等式 输出的话,返回是None 。去掉返回值即可得到新的列表!
看下面两个示例:
# 原代码: list= [1,2,3,4] list= list.append(5) print(list) # 输出: # >>> None # 修改后代码 list= [1,2,3,4] list.append(5) print(list) # 输出: # >>> 1,2,3,4,5
insert() 函数
insert() 函数的功能:讲一个元素添加到列表的指定位置中
insert() 函数的用法:list.insert(index, new_item) , index为新的元素放在的新的位置(数字,下标位),new_item为填的新成员(元素)
insert() 函数与append()函数的区别:
- insert() 函数可以将元素添加至任意的位置,而append()函数只能将元素添加之末尾。
- 如果insert() 函数传入的位置不存在,则将新的元素添加至列表结尾
示例如下:
friuts = ['橘子', '香蕉', '火龙果'] friuts.insert(1, '苹果') print(friuts) # 执行结果如下: # >>> ['橘子', '苹果', '香蕉', '火龙果'] friuts.insert(10, '鸭梨') print(friuts) # 执行结果如下: # >>> '橘子', '苹果', '香蕉', '火龙果', '鸭梨']
count() 函数
count() 函数的功能:返回列表(元组)中某个成员(元素)的个数
count() 函数的用法:inttype = list.count(item) , item为想要查询的个数
count() 函数的注意事项:如果查询的成员(元素)不存在,则返回 0;列表只会检查完整元素是否存在需要计算的内容。
示例如下:
friuts = ['橘子', '香蕉', '火龙果', '香蕉', '苹果'] count = friuts.count('香蕉') print('friuts 列表中香蕉出现的次数为 ' + str(count) + ' 次') # 执行结果如下: # >>> friuts 列表中香蕉出现的次数为 2 次 # 注意事项:如果查询的成员(元素)不存在,则返回 0;列表只会检查完整元素是否存在需要计算的内容。 friuts = ['橘子', '香蕉', '火龙果', '香蕉', '苹果'] count = friuts.count('香') print('friuts 列表中\'香\'出现的次数为 ' + str(count) + ' 次') # 执行结果如下: # >>> friuts 列表中'香'出现的次数为 0 次
remove() 函数
remove() 函数的功能:删除列表中的某个元素
remove() 函数的用法:list_remove = list.remove(item) , item为想要删除的元素
remove() 函数的注意事项:
- 如果删除的成员(元素)不存在,则会直接报错
- 如果被删除的元素有多个,只会删除第一个
- remove() 函数不会返回一个新的列表,而是在原有的列表中对成员(元素)执行删除动作
示例如下:
books = ['Python', 'Java', 'PHP'] books.remove('PHP') print(books) # 执行结果如下: # >>> ['Python', 'Java']
Python内置函数 del
del 函数的功能:将变量完全删除(即踢打内存管家将变量从内存中删除)
示例如下:
books = ['Python', 'Java', 'PHP'] books.del() print(books) # 执行结果如下: # >>> NameError: name 'books' is not defined. Did you mean: 'bool'?
reverse() 函数
reverse() 函数的功能:对当前列表顺序的反转
reverse() 函数的用法: list = list.reverse() , 无参数传递
示例如下:
books = ['Python', 'Java', 'PHP'] books.reverse() print(books) # 执行结果如下: # >>> ['PHP', 'Java', 'Python']
sort() 函数
sort() 函数的功能:对当前列表按照一定的规律进行排序
sort() 函数的用法: list = list.sort(cmp=Node, key=Node, reverse=False)
- cmp —> 可选参数,制定排序方案的函数
- key —> 参数比较
- reverse —> 排序规则,reverse = True (降序);reverse = False (升序),升序是默认状态
- 这里的 cmp 和 key涉及到函数的知识点,后续的函数相关章节会详细介绍
sort() 函数的注意事项:列表中的元素类型必须相同,否则会报错,无法排序
示例如下:
books = ['Python', 'C', 'PHP', 'Go', 'C++', 'Java'] books.sort() print(books) # 执行结果如下: # >>> ['C', 'C++', 'Go', 'Java', 'PHP', 'Python'] int_lists = [79, 6, 99, 46, 30] int_lists.sort(reverse=True) print(int_lists) # 执行结果如下: # >>> [99, 79, 46, 30, 6] test_list = ['Hello', 666, 3.14, True] test_list.sort() print(test_list) # 执行结果如下: # >>> TypeError: '<' not supported between instances of 'int' and 'str'
clear() 函数
clear() 函数的功能:将当前列表的数据清空
clear() 函数的用法: list = list.clear() , 该函数无参数,无返回值
示例如下:
int_list = [79, 6, 99, 46, 30] int_list.clear() print(int_list) print(len(int_list)) # 执行结果如下: # >>> [] # >>> 0
思考一个问题:当我们使用 clear() 函数 清空一个列表时,和重新命名一个空的列表,哪个更节省资源?
其实相对来说使用 clear() 函数更节省资源;当我们创造一个变量的时候,会占用一个内存地址,使用该变量之后该变量地址则会被内存管家清空。再次使用时,又会生成新的内存地址,这个过程也是需要消耗资源的,只是因为速度处理的比较快我们无法感知罢了。
copy() 函数
copy() 函数的功能:将当前列表复制一份新的列表,虽然新的列表虽与旧的列表的内容相同,但是内存地址不同
copy() 函数的用法:list = list.copy() ,该函数无参数,返回一个与旧列表一模一样的列表
copy() 函数与 2次赋值 的区别:
- 二次赋值的变量与原始变量共享相同的内存地址空间
- copy() 函数创建的新列表与原始列表不是一个内存空间,新列表的变量值不因原列表变量的值的变更而变更
- copy() 函数属于浅拷贝
示例如下:
old_list = [1, 2, 3, 4, 5] new_list = old_list.copy() print(new_list) print("\'old_list\'内存地址为:" + str(id(old_list)), "\'new_list\'内存地址为:" + str(id(new_list))) # 执行结果如下: # >>> [1, 2, 3, 4, 5] # >>> 'old_list'内存地址为:2175764462080 'new_list'内存地址为:2175767330496
copy() 函数与 2次赋值 的区别示例如下:
old_list = [1, 2, 3, 4, 5] new_list_01 = old_list new_list_02 = old_list.copy() old_list.append(6) print(new_list_01) print(new_list_02) # 执行结果如下: # >>> [1, 2, 3, 4, 5, 6] # >>> [1, 2, 3, 4, 5]
浅拷贝
什么是浅拷贝?
通俗的说,我们有一个列表 a,列表里的元素还是列表。当我们拷贝出新列表 b 后,无论是 a 还是 b 的内部的列表中的数据发生了变化后,相互之间都会受到影响。这就是浅拷贝。
浅拷贝示例如下:
old_list = [[1, 2, 3], [4, 5]] new_list = old_list.copy() old_list[1].append(6) print(str(old_list), "--------," + str(new_list)) # 执行结果如下: # >>> [[1, 2, 3], [4, 5, 6]] --------,[[1, 2, 3], [4, 5, 6]] new_list[0].append(0) print(str(old_list), "--------," + str(new_list)) # 执行结果如下: # >>> [[1, 2, 3, 0], [4, 5, 6]] --------,[[1, 2, 3, 0], [4, 5, 6]]
深拷贝
什么是深拷贝?
深拷贝不仅对列表第一层进行了 copy ,对深层的数据也进行了 copy, 原始变量与新变量之间完全不共享数据,这就是深拷贝。
深拷贝示例如下:
old_list_deepcopy = [[1, 2, 4], [4, 5]] new_list_deepcopy = copy.deepcopy(old_list_deepcopy) old_list_deepcopy[1].append(6) print(str(old_list_deepcopy), "--------," + str(new_list_deepcopy)) # 执行结果如下: # >>> [[1, 2, 4], [4, 5, 6]] --------,[[1, 2, 4], [4, 5]] new_list_deepcopy[0].append(0) print(str(old_list_deepcopy), "--------," + str(new_list_deepcopy)) # 执行结果如下: # >>> [[1, 2, 4], [4, 5, 6]] --------,[[1, 2, 4, 0], [4, 5]]
关于浅拷贝与深拷贝,我们再来看看对 数字类型 和 字符串类型又是怎样的,示例如下:
str_1 = "python" print("str_1: ", str_1, id(str_1)) str_2 = str_1 print("str_2: ", str_2, id(str_2)) str_3 = copy.copy(str_2) print("str_3: ", str_3, id(str_3)) str_4 = copy.deepcopy(str_1) print("str_4: ", str_4, id(str_4)) # 执行结果如下: # >>> str_1: python 140222883317104 # >>> str_2: python 140222883317104 # >>> str_3: python 140222883317104 # >>> str_4: python 140222883317104
可以看出,数字类型与字符串类型的浅拷贝与深拷贝是没有区别的,都是指向的同意内存地址,所以深拷贝与浅拷贝是没有意义的
extend() 函数
extend() 函数的功能:将其他列表或元组中的元素一次性的导入到当前列表中
extend() 函数的用法:list = list.extend(iterable) ,iterable 代表列表或元组,该函数无返回值。
示例如下:
students = ['Neo', 'Jack', 'Lily'] new_students = ('Lilei', 'Lily') print(id(students)) # 执行结果如下: # >>> 2032966498816 students.extend(new_students) print(students) print(id(students)) # 执行结果如下: # >>> ['Neo', 'Jack', 'Lily', 'Lilei', 'Lily'] 相同的成员(元素)并不会覆盖掉 # >>> 2032966498816
小练习:完成列表合并功能
例如给出两个列表[1, 3, 5, 7, 9]和[2, 4, 6, 8, 10],最终合并为[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
list_1 = [1, 3, 5, 7, 9] list_2 = [2, 4, 6, 8, 10] list_1.extend(list_2) print(list_1) # 执行结果如下: # >>> [1, 3, 5, 7, 9, 2, 4, 6, 8, 10] list_1.sort() print(list_1) # 执行结果如下: # >>> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
以上就是Python学习之列表常用方法总结的详细内容,更多关于Python列表的资料请关注脚本之家其它相关文章!