- 【前端网络深潜行者】信息化人员必备知识&面试宝典:TCP连接中断,客户端突然“玩失踪”怎么办?
DTcode7
IT信息技术相关#信息化技能面试宝典HTML5前端javascript前端三大核心JS
【前端网络深潜行者】信息化人员必备知识&面试宝典:TCP连接中断,客户端突然“玩失踪”怎么办?TCP的忠诚卫士:保活与重传保活机制(Keepalive)超时重传与超时前端策略:优雅的应对与重连案例一:心跳检测案例二:断线重连逻辑安全与性能考量实战经验之谈排错思路结语与探讨在网络通信的迷宫中,TCP/IP协议犹如稳固的桥梁,承载着数据的往来。然而,当客户端这个“信使”突然玩起了失踪”,我们如何确保这
- 医图论文 CVPR‘24 | 适应医学图像中泛化异常检测的视觉-语言模型
小白学视觉
医学图像处理论文解读语言模型人工智能计算机视觉医学图像顶会医学图像处理CVPR论文解读
论文信息题目:AdaptingVisual-LanguageModelsforGeneralizableAnomalyDetectioninMedicalImages适应医学图像中泛化异常检测的视觉-语言模型作者:ChaoqinHuang,AofanJiang,JinghaoFeng,YaZhang,XinchaoWang,YanfengWang源码:https://github.com/Medi
- 【day14】画流程图
鹿鸣悠悠
文旅行业知识学习流程图
绘制业务流程图是梳理和优化企业流程的重要工具,以下是零基础也能快速上手的指南,涵盖必备知识、绘制步骤和常见误区:一、画流程图前必须了解的3个核心概念流程图的本质不是“画图”,而是将复杂业务逻辑可视化的工具,核心在于逻辑清晰、角色明确。目标:让内外部人员快速理解流程中的关键环节、决策点、责任方。常见流程图类型类型适用场景示例工具符号基本流程图简单线性流程(如审批流程)矩形(步骤)、菱形(判断)跨职能
- DeepBranchTracer:一种使用多特征学习进行曲线结构重建的通用方法
数据集
2024-02-02,由刘超、赵婷、郑能干一起提出了一种名为DeepBranchTracer的新型方法,是一种高效、通用的曲线结构重建方法,适用于多种2D和3D图像数据集。通过结合图像特征和几何特征,显著提高了重建的准确性和连续性。一、研究背景曲线结构(curvilinearstructures)是图像中常见的几何元素,广泛应用于医学图像中的神经分支和血管,以及遥感图像中的道路等。从图像中重建这些
- C语言基础知识05---必背+函数
努力做小白
C语言学习算法数据结构c语言
目录必备知识点1、C语言5大分区1.1局部变量1.2全局变量1.3静态局部变量1.4外部声明变量2、关键字2.1static2.2extern3、局部变量和全局变量能不能同名?4、实参&&形参函数1、函数的作用2、函数的分类2.1主函数2.2子函数3、函数命名4、函数定义格式5、函数传参5.1值传参5.2地址传参6、函数类型6.1函数的声明6.2函数调用6.3递归函数7、指针函数&&函数指针7.1
- python网格插值站点_在python中,在二维零网格上两点之间插值一条值线
weixin_39965490
python网格插值站点
TLDR:在2dnumpy数组中找到2个点后,如何在0数组中在它们之间插值一条1行?在上下文:目前我正在尝试从二值化的医学图像数据(0和1)对一个3d数组执行2d操作。最终目标是在填充体素/像素(即第一个和最后一个实例)的起点和终点之间添加一条1s的线。在为此,我使用SimpleITK分割一行,然后将其转换为numpy数组。在其他示例之后,我编写了返回一组数组的函数,这些数组显示填充(1)个像素和
- YOLO11改进-模块-引入CMUNeXt Block 增强全局信息
一勺汤
YOLOv11模型改进系列网络YOLO目标检测模块魔改YOLOv11YOLOV11模型改进
在医学图像分割领域面临诸多问题,如U形架构卷积网络难以提取全局信息,混合架构因计算资源受限在实际医疗场景应用受阻,轻量化网络在保证性能与提取全局信息上存在矛盾。因此,设计了CMUNeXtBlock,CMUNeXtBlock采用大核深度可分离卷积替代普通卷积来提取全局信息,凭借深度可分离卷积减少参数和计算成本以维持轻量化,同时综合利用卷积归纳偏置和全局信息提取能力,有效解决了这些问题。代码:http
- C++-第13课List 容器详解:适合每个程序员的必备知识
藤椒味的火腿肠真不错
C++学习之路c++list
1:C++list容器简介1.1C++STL容器概述C++提供了丰富的标准模板库(STL),其中包括顺序容器(如vector、deque)和关联容器(如map、set)。list是一种链表结构的顺序容器,它的底层实现是双向链表。这使得list在插入和删除操作上比vector更加高效,但由于不支持随机访问,因此访问特定位置的元素时效率较低。1.2list的特点双向链表:list底层是一个双向链表,能
- AI产品大模型学习指南:清晰路线,AI产品经理必备知识点一网打尽!_AI产品经理
AGI大模型学习
人工智能产品经理LLM大模型学习学习知识图谱AI产品经理
一、AI产品经理知识扫盲1️⃣【AI的产品形态到底是什么】?没有固定形态。实际上AI只是一种对传统产品或服务赋能的手段而已,将各种“中间件”(通常是一种训练好的模型,当输入一定数据后自动返回一定的输出值)、传感器等不同形式的软件、硬件融入传统产品或服务的使用或体验流程中。AI只是一种工具而已,产品的终极目标仍然不变为用户创造最大价值,提供最佳用户体验。2️⃣【AI产品的三要素】算法+计算能力+数据
- 作为 .NET CAD 二次开发工程师的核心知识与建议
周杰伦fans
ai学习参考Cad二次开发.NET笔记学习C#的笔记.net
作为.NETCAD二次开发工程师的核心知识与建议一、必备知识与硬性要求编程技能与工具•C#与.NET平台:◦熟练掌握C#语法、面向对象编程(OOP)、泛型、LINQ等核心特性。◦需熟悉AutoCAD.NETAPI(如acdbmgd.dll、acmgd.dll),能通过CommandMethod创建自定义命令。示例:[CommandMethod("DrawLine")]publicvoidDrawL
- Python 基础(五):基础语句
AI自学kuke-v
Python教学python开发语言
在前几期我们讲了:Python基础(一):基础常识Python基础(二):变量与数据类型Python基础(三):入门必备知识的思考与对之前内容的总结Python基础(四):运算符与优先级这些内容后我们会开始将一些基础的题目来巩固学习的内容,这一期,我们讲基础语句。1条件语句在进行逻辑判断时,我们需要用到条件语句,Python提供了if、elif、else来进行逻辑判断。格式如下所示:if判断条件1
- 顶配版SAM:由分割一切迈向感知一切
猛码Memmat
prompt人工智能计算机视觉语义分割prompt
文章目录0.前言1.论文地址1.1项目&代码1.2模型地址1.3Demo2.模型介绍2.1亮点2.2方法3.量化结果、可视化展示Reference0.前言现有的视觉分割基础模型,如SAM及其变体,集中优势在形状、边缘等初级定位感知,或依赖外部模型完成更高级的语义理解任务。然而,迈向更高效的视觉感知则需要在单个模型中实现全面的视觉理解,以助力于更广泛的应用场景,如自动驾驶、安防监控、遥感以及医学图像
- 书籍-《医学图像分析(论文版)》
计算机视觉深度学习人工智能
书籍:MedicalImageAnalysis作者:AlejandroFrangi,JerryPrince,MilanSonka出版:AcademicPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《医学图像分析(论文版)》01书籍介绍医学成像技术是许多生物医学科学突破的基础,成为推动生物医学科学进步的关键技术。《医学图像分析》一书提供了医学图像计算和分析的实用知识,由该领域的顶尖教
- Python 基础(三):入门必备知识的思考与对之前内容的总结
AI自学kuke-v
Python教学python开发语言
1思考前两节我们讲了input,print()还有变量与数据类型的用法,但是我发现可学习性还是比较低。无法让大家系统的掌握Python这门语言的入门语法。那么为什么要系统的掌握语法呢?因为系统的掌握语法后,当我们想要用到这一知识点的时候,我们就可以迅速的找到相应的处理方法,从而更加方便与快捷的解决我们遇到的问题,不至于我们到用到的时候再去寻找相关的处理方法,所以我讲的内容要尽可能的高度地相关性、全
- PyRadiomics 安装与使用教程
符凡言Elvis
PyRadiomics安装与使用教程项目地址:https://gitcode.com/gh_mirrors/py/pyradiomics1.项目目录结构及介绍PyRadiomics是一个用于从医学图像中提取放射组学特征的开源Python库。其基本的目录结构如下:pyradiomics/├──docs/#文档相关材料│├──_build/#构建后的文档│└──source/#源代码文档├──exam
- UNet:UNet在自然环境监测中的应用案例_2024-07-24_09-14-11.Tex
chenjj4003
游戏开发2深度学习计算机视觉人工智能性能优化游戏前端javascript
UNet:UNet在自然环境监测中的应用案例UNet模型概述UNet是一种广泛应用于图像分割任务的卷积神经网络模型,由OlafRonneberger、PhilippFischer和ThomasBrox在2015年提出。其设计初衷是为了在生物医学图像分析中进行细胞和组织的精确分割,但因其高效性和准确性,迅速在自然环境监测、遥感图像分析、卫星图像处理等领域找到了应用。架构原理UNet模型采用了一个编码
- 【PyTorch 实战2:UNet 分割模型】10min揭秘 UNet 分割网络如何工作以及pytorch代码实现(详细代码实现)
xiaoh_7
pytorch网络图像处理计算机视觉
UNet网络详解及PyTorch实现一、UNet网络原理 U-Net,自2015年诞生以来,便以其卓越的性能在生物医学图像分割领域崭露头角。作为FCN的一种变体,U-Net凭借其Encoder-Decoder的精巧结构,不仅在医学图像分析中大放异彩,更在卫星图像分割、工业瑕疵检测等多个领域展现出强大的应用能力。UNet是一种常用于图像分割的卷积神经网络架构,其特点在于其U型结构,包括一个收缩路径
- 【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch
胖墩会武术
深度学习PyTorch项目实战pythonunetpytorch
文章目录一、项目介绍二、项目实战2.1、环境搭建2.1.1、下载源码2.1.2、下载预训练模型2.1.3、下载训练集2.2、环境配置2.3、代码优化+架构优化2.4、模型预测:predict.pyU-Net是一种用于生物医学图像分割的卷积神经网络架构,最初由OlafRonneberger等人于2015年提出。论文:U-Net:ConvolutionalNetworksforBiomedicalIm
- 金三银四最新版Java面试必背题详解(含答案)
Java八股文面试
java面试开发语言职场和发展jvmspring
Java面试八股文:高效备战Java面试的必备知识前言在Java开发的面试中,面试官常常会围绕基础知识、经典问题以及核心概念展开提问,这些问题被戏称为“Java面试八股文”。熟练掌握这些内容,不仅能帮助你顺利通过面试,还能巩固你对Java知识体系的理解。本文将全面整理Java面试八股文的核心内容,助你轻松备战面试!Java面试八股文核心内容1.Java基础知识a.Java的特点平台无关性:基于JV
- SAM应用:医学图像和视频中的任何内容分割中的基准测试与部署
烧技湾
AI&ComputerVisionSAMMED2SAN医学图像分割分割一切
医学图像和视频中的任何内容分割:基准测试与部署目录摘要:一、引言1.1SAM2在医学图像和视频中的应用二.结果2.1数据集和评估协议2.2二维图像分割的评估结果三讨论四局限性和未来的工作五、方法5.1数据来源和预处理5.2微调协议5.3评估指标总结关键字:SAM、分割一切基础模型、医学图像、视频、多模态最近医学分割模型发展迅速,基于SAM的医学图像处理得到了进一步的发展。为了追踪医学图像处理的最新
- simpleITK - Registration - SimpleITKv4配准 配准改进
努力减肥的小胖子5
图像配准simpleITKregistration
文章目录通过配准改进配准:手动定位自动定位半自动定位加载数据手动地标定位配准(手动地标定位)家庭作业:半自动地标定位配准(半自动地标定位)回答以下问题:通过配准改进配准:此笔记故意缺少代码,这是使用SimpleITK的家庭作业作业的示例。医学图像中解剖地标或基准标记的定位是一项常见任务,既用于初始化两幅图像之间基于强度的配准,也用于计算机辅助干预中图像空间和物理空间之间的配准。在此笔记本中,我们的
- 第八章 医学图像的配准和融合
数据分析能量站
图像处理图像
第八章医学图像的配准和融合一概述根据医学图像所提供的信息可将图像分为两类:解剖结构图像和功能图像。这两类图像各有优缺点:解剖图像以较高的分辨率提供脏器的解剖形态信息,但无法反映脏器的功能情况;功能图像的分辨率较差,但它提供的脏器功能代谢信息是解剖图像不能替代的。二医学图像配准与融合的关系图像配准是图像融合的先决条件,必须是先进行配准变换,才能实现准确的融合。三医学图像配准和融合在临床中的应用对使用
- 图像信息的配准和融合
数据分析能量站
图像处理class
第八章医学图像的配准和融合一概述根据医学图像所提供的信息可将图像分为两类:解剖结构图像和功能图像。这两类图像各有优缺点:解剖图像以较高的分辨率提供脏器的解剖形态信息,但无法反映脏器的功能情况;功能图像的分辨率较差,但它提供的脏器功能代谢信息是解剖图像不能替代的。二医学图像配准与融合的关系图像配准是图像融合的先决条件,必须是先进行配准变换,才能实现准确的融合。三医学图像配准和融合在临床中的应用对使用
- 边缘计算与联邦学习驱动医疗影像特征工程优化
智能计算研究中心
其他
内容概要随着医疗影像数据规模的指数级增长与多模态成像技术的普及,传统集中式特征工程方法面临数据孤岛、隐私泄露及计算效率等多重挑战。本研究针对医疗影像分析场景中跨机构数据共享的复杂性,提出基于边缘计算与联邦学习的协同优化框架,通过分布式特征工程重构医学图像的解析范式。该框架以卷积神经网络为核心,结合多阶段数据预处理流程(包括噪声抑制、模态对齐及标准化处理),实现跨设备医疗影像的特征表示统一化。在模型
- Android 开发必备知识点整理
阿里大厂_RMI
androidjava算法
ArrayMap1.基于两个数组实现,一个存放hash;一个存放键值对。扩容的时候只需要数组拷贝,不需要重建哈希表2.内存利用率高3.不适合存大量数据,因为会对key进行二分法查找(1000以下)SparseArray1.基于两个数组实现,int做key2.内存利用率高3.不适合存大量数据,因为会对key进行二分法查找(1000以下)volatile关键字只能用来修饰变量,适用修饰可能被多线程同时
- ️ 总览:TotalSegmentator - 医学影像分割的革新者
金斐茉
️总览:TotalSegmentator-医学影像分割的革新者TotalSegmentatorToolforrobustsegmentationof>100importantanatomicalstructuresinCTimages项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator在医学图像处理领域中,精确且高效的自动分割工具对于研究和
- RadioTransformer:用于视觉注意力引导疾病分类的级联全局焦点Transformer
托比-马奎尔
医学图像处理Transformer变形transformer深度学习人工智能
利用放射科医生的注视模式并模拟他们的视觉认知行为,以在胸部X光片上进行疾病诊断。放射科医生等领域专家依靠视觉信息来解释医学图像。另一方面,视觉解释有挑战性,但是视线跟踪已被用来捕获领域专家的观看行为,从而深入了解视觉搜索的复杂性。但即使是那些依赖注意力机制的框架,也不会利用这种丰富的领域信息来进行诊断。RadioTransformer通过学习放射科医生的视觉搜索模式,在级联的全局焦点Transfo
- DICOM标准详解
浩瀚之水_csdn
三维图像dcm
DICOM(DigitalImagingandCommunicationsinMedicine)标准是医学图像和相关信息的数字图像通信的国际标准。以下是DICOM标准的详细内容:一、概述DICOM标准由医学图像处理和通信的专业组织DICOM标准委员会(DICOMStandardsCommittee)负责维护和更新。它定义了医学影像设备(如X射线、CT扫描、MRI等)生成、存储、传输和显示的规范,以
- nnUNet V2修改网络——替换为U-Net V2
w1ndfly
nnU-NetV2修改网络人工智能深度学习计算机视觉卷积神经网络机器学习
更换前,要用nnUNetV2跑通所用数据集,证明nnUNetV2、数据集、运行环境等没有问题阅读nnU-NetV2的U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。U-NetV2是一种先进的医学图像分割模型,它通过改进的跳跃连接和语义细节注入(SDI)模块,有效地融合了高级语义信息和低级细节信息,从而显著提升了分割精度。相比原始U-Net,U-NetV2在多个数据集上表现出更
- 网工必备知识点(Essential Knowledge Points for Internet Workers)
Linux运维老纪
无所畏惧走进计算机网络世界网络服务器运维开发容器云计算
网工必备知识点网络工程师是信息技术领域中不可或缺的职业,负责设计、实施和管理网络系统,确保企业内外部的通信安全、流畅。要成为一名合格的网络工程师,掌握基础知识是必不可少的。一、交换机是一种网络设备,通过学习MAC地址来决定数据包的传输路径,是现代网络中实现高效数据交换的关键设备。二、路由器是一种网络设备,用于在不同网络间路由数据包,实现网络间的通信。它工作在网络层,通过路由表寻址转发数据包。三、防
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc