作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客
本文网址:https://blog.csdn.net/HiWangWenBing/article/details/122094932
目录
第1章 Train.py代码
1.1 代码路径
1.2 关键命令行参数(以CycleGAN为例)
第2章 训练代码主要流程
(1)获取命令行参数:opt = TrainOptions().parse()
(2)设置训练模式下命令行参数
(3)创建数据集:dataset = create_dataset(opt)
(4)创建模型: model = create_model(opt)
(5)加载并打印训练模型结构:model.setup(opt)
(6)构建web输出结构
(7)设置在train模式:model.train()
(8)读取数据集:for i, data in enumerate(dataset):
(10)计算梯度,优化参数:model.optimize_parameters()
(11)获取输出图片
(12)可视化打印loss
(13)存储网络模型
(14)更新学习率
第3章 代码详解
.\pytorch-CycleGAN-and-pix2pix\train
--dataroot ./datasets/horse2zebra --name horse2zebra --model cycle_gan --verbose
其中 --verbose:表示打印网络架构
根据选项参数,确定模型的类型。
预训练模型的由opt参数指定。
print(model.model_names)
print(model.visual_names)
initialize network with normal
initialize network with normal
initialize network with normal
model [CycleGANModel] was created
---------- Networks initialized -------------
[Network G_A] Total number of parameters : 11.378 M
[Network G_B] Total number of parameters : 11.378 M
[Network D_A] Total number of parameters : 2.765 M
[Network D_B] Total number of parameters : 2.765 M
-----------------------------------------------
visualizer = Visualizer(opt)
(9)unpack成对数据:model.set_input(data)
这一步骤是模型训练的最核心的代码:
def optimize_parameters(self):
"""Calculate losses, gradients, and update network weights; called in every training iteration"""
# 生成fake图片
# forward
self.forward() # compute fake images and reconstruction images.
# G_A and G_B
self.set_requires_grad([self.netD_A, self.netD_B], False) # Ds require no gradients when optimizing Gs
self.optimizer_G.zero_grad() # set G_A and G_B's gradients to zero
# G网络的反向求导
self.backward_G() # calculate gradients for G_A and G_B
# G网络的参数更新
self.optimizer_G.step() # update G_A and G_B's weights
#
# D_A and D_B
self.set_requires_grad([self.netD_A, self.netD_B], True)
self.optimizer_D.zero_grad() # set D_A and D_B's gradients to zero
# D网络的反向求导
self.backward_D_A() # calculate gradients for D_A
self.backward_D_B() # calculate graidents for D_B
# D网络的参数更新
self.optimizer_D.step() # update D_A and D_B's weights
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
losses = model.get_current_losses()
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
model.save_networks(save_suffix)
model.update_learning_rate()
if __name__ == '__main__':
opt = TrainOptions().parse() # get training options
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
dataset_size = len(dataset) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size)
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
total_iters = 0 # the total number of training iterations
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): # outer loop for different epochs; we save the model by , +
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch
for i, data in enumerate(dataset): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_iters += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0: # cache our model every epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate() # update learning rates at the end of every epoch.
作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客
本文网址:https://blog.csdn.net/HiWangWenBing/article/details/122094932