import tensorflow as tf
from sklearn import datasets
import numpy as np
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target
np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(3,activation = 'softmax',kernel_regularizer = tf.keras.regularizers.l2())
])
model.compile(optimizer = tf.keras.optimizers.SGD(lr = 0.1),
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = False),
metrics = ['sparse_categorical_accuracy'])
model.fit(x_train,y_train,batch_size = 32,epochs = 500,validation_split = 0.2,validation_freq = 20)
model.summary()
将上述代码封装成class
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras import Model
from sklearn import datasets
import numpy as np
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target
np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)
class IrisModel(Model):
def __init__(self):
super(IrisModel,self).__init__()
self.dl = Dense(3,activation = 'sigmoid',kernel_regularizer = tf.keras.regularizers.l2())
def call(self,x):
y = self.dl(x)
return y
model = IrisModel()
model.compile(optimizer = tf.keras.optimizers.SGD(lr = 0.1),
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = False),
metrics = ['sparse_categorical_accuracy'])
model.fit(x_train,y_train,batch_size = 32,epochs = 500,validation_split = 0.2,validation_freq = 20)
model.summary()
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train,y_train),(x_test,y_test) = mnist.load_data()
x_train,x_test = x_train / 255.0,x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128,activation = 'relu'),
tf.keras.layers.Dense(10,activation = 'softmax')
])
model.compile(optimizer = 'adam',
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = False),
metrics = ['sparse_categorical_accuracy'])
model.fit(x_train,y_train,batch_size = 32,epochs = 5,validation_data = (x_test,y_test),validation_freq=1)
model.summary()
将上述代码封装成class
import tensorflow as tf
from tensorflow.keras.layers import Dense,Flatten
from tensorflow.keras import Model
mnist = tf.keras.datasets.mnist
(x_train,y_train),(x_test,y_test) = mnist.load_data()
x_train,x_test = x_train / 255.0,x_test / 255.0
class MnistModel(Model):
def __init__(self):
super(MnistModel,self).__init__()
self.flatten = Flatten()
self.d1 = Dense(128,activation = 'relu')
self.d2 = Dense(10,activation = 'softmax')
def call(self,x):
x = self.flatten(x)
x = self.d1(x)
y = self.d2(x)
return y
model = MnistModel()
model.compile(optimizer = 'adam',
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = False),
metrics = ['sparse_categorical_accuracy'])
model.fit(x_train,y_train,batch_size = 32,epochs = 5,validation_data = (x_test,y_test),validation_freq=1)
model.summary()