python日期函数引用_使用python中pandas的read_excel函数将日期保留为字符串

Python 2.7.10

尝试过pandas 0.17.1——函数读取excel

尝试过pyexcel 0.1.7+pyexcel xlsx 0.0.7--函数get_records()

在Python中使用panda时,是否可以读取excel文件(格式:xls | xlsx)并将包含日期或日期+时间值的列保留为字符串,而不是将自动转换为datetime.datetime或timestamp类型?

如果不能使用pandas,有人能建议使用另一种方法/库来读取xls | xlsx文件并将日期列值保留为字符串吗?

对于pandas解决方案尝试df.info(),结果日期列类型如下所示:>>> df.info()

Int64Index: 117 entries, 0 to 116

Columns: 176 entries, Mine to Index

dtypes: datetime64[ns](2), float64(145), int64(26), object(3)

memory usage: 161.8+ KB

>>> type(df['Start Date'][0])

Out[6]: pandas.tslib.Timestamp

>>> type(df['End Date'][0])

Out[7]: pandas.tslib.Timestamp

尝试/接近1:def read_as_dataframe(filename, ext):

import pandas as pd

if ext in ('xls', 'xlsx'):

# problem: date columns auto converted to datetime.datetime or timestamp!

df = pd.read_excel(filename) # unwanted - date columns converted!

return df, name, ext

尝试/接近2:import pandas as pd

# import datetime as datetime

# parse_date = lambda x: datetime.strptime(x, '%Y%m%d %H')

parse_date = lambda x: x

elif ext in ('xls', 'xlsx', ):

df = pd.read_excel(filename, parse_dates=False)

date_cols = [df.columns.get_loc(c) for c in df.columns if c in ('Start Date', 'End Date')]

# problem: date columns auto converted to datetime.datetime or timestamp!

df = pd.read_excel(filename, parse_dates=date_cols, date_parser=parse_date)

还尝试了pyexcel库,但它执行了相同的自动魔术转换行为:

尝试/接近3:import pyexcel as pe

import pyexcel.ext.xls

import pyexcel.ext.xlsx

t0 = time.time()

if ext == 'xlsx':

records = pe.get_records(file_name=filename)

for record in records:

print("start date = %s (type=%s), end date = %s (type=%s)" %

(record['Start Date'],

str(type(record['Start Date'])),

record['End Date'],

str(type(record['End Date'])))

)

你可能感兴趣的:(python日期函数引用)