- 人工智能之数学基础:一个小例子帮你快速搞懂极大线性无关向量组
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能线性代数机器学习极大线性无关向量组深度学习神经网络
本文重点在上一节课程中,我们学习了线性相关和线性无关。当线性相关的时候,那么说明这组向量至少存在一个向量可以被其它向量给表示,可以被表示就说明这个向量就是可有可无的,可以被替代的,这里就涉及到极大线性无关向量组的概念了,本文对此进行学习。极大无关向量组的定义与性质定义在线性空间中,如果存在一个向量组,它满足以下两个条件:一是它本身是线性无关的;二是向量空间中的任何包含它的向量组,如果仍然保持线性无
- 个人职业发展与AI赋能的前端开发
前端
在瞬息万变的科技浪潮中,个人职业发展显得尤为重要。对于前端开发者而言,如何提升自身竞争力,适应日新月异的技术革新,是持续关注的核心问题。而近年来,人工智能(AI)技术的飞速发展,特别是AI代码生成器的兴起,正深刻地改变着前端开发的格局,为开发者们提供了前所未有的机遇。本文将以ScriptEcho为例,探讨AI技术如何赋能前端开发,助力个人职业发展。市场趋势与个人技能提升当前市场对前端开发人才的需求
- 代码重构的革命:AI代码生成器如何改变游戏规则
前端
在软件开发的世界里,代码重构是一项既重要又艰巨的任务。繁琐的重复性工作、低下的效率以及难以避免的错误,常常让开发者们疲惫不堪。然而,随着人工智能技术的飞速发展,智能化代码重构的时代已经到来,而AI代码生成器正成为这场革命的核心驱动力。代码重构的挑战:一个开发者的心声传统的代码重构过程充满了挑战。想象一下,你需要将一个庞大的、混乱的代码库改造成模块化、易于维护的结构。这需要你花费大量的时间去理解现有
- R语言的面向对象编程
2501_90183952
包罗万象golang开发语言后端
R语言的面向对象编程在现代编程中,面向对象编程(Object-OrientedProgramming,OOP)是一种重要的编程范式,它通过将数据和操作数据的函数结合在一起,来提高代码的重用性和可维护性。在R语言中,面向对象编程并不是一开始就被引入的,但随着其发展,R逐渐支持了多种面向对象编程的系统,例如S3、S4以及R6等。本文将深入探讨R语言的面向对象编程,介绍其基本概念、特点以及在实际应用中的
- 如何建设和维护数据仓库:深入指南
数据库数据库开发
摘要数据仓库是企业数据管理的核心,它不仅支持决策制定,还能提供深入的数据分析。本文将详细介绍如何从零开始建设和维护一个高效、可靠的数据仓库,涵盖设计、实施、监控和优化的全过程。通过具体的代码示例和最佳实践,帮助读者深入理解数据仓库的构建和管理。引言数据仓库是企业数据管理的心脏,它集中存储和管理来自不同来源的数据,支持复杂的查询和分析。随着数据量的爆炸性增长,如何高效地建设和维护数据仓库成为企业面临
- Python 3.13性能大提升:免费多线程时代来临
敖行客 Allthinker
pythonjava开发语言爬虫
在编程的世界里,Python一直以其简洁、易读和强大的功能而备受青睐。随着技术的不断进步,Python的每一个新版本都带来了新的惊喜和改进。而Python3.13无疑是其中的一颗璀璨明星。在一个数据驱动的世界里,Python已经成为了一种无处不在的编程语言,它的性能和功能的提升始终是开发者们关注的热点。随着大数据、人工智能、云计算等技术的飞速发展,对编程语言性能的要求也在不断提高。在这样的背景下,
- Transformer入门(1)transformer及其编码器-解码器
通信仿真实验室
GoogleBERT构建和训练NLP模型berttransformer人工智能NLP自然语言处理
文章目录1.Transformer简介2.Transformer的编码器-解码器架构3.transformer的编码器1.Transformer简介Transformer模型是一种用于自然语言处理的机器学习模型,它在2017年由Google的研究者提出,并在论文《AttentionisAllYouNeed》中详细描述。Transformer模型的核心创新在于其采用了自注意力(self-attent
- 用Python爬虫获取微博热搜词:数据抓取、分析与可视化全流程
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言selenium
引言微博作为中国最受欢迎的社交平台之一,每时每刻都在更新着海量的内容。其中,微博热搜词反映了用户关注的热点话题、社会事件及潮流趋势。对于数据分析、情感分析以及趋势预测等领域,获取微博热搜数据是一个非常有价值的任务。在本篇博客中,我们将详细介绍如何使用Python爬虫技术获取微博的热搜词,并进行数据分析和可视化。通过全流程的讲解,帮助你了解如何通过爬虫技术抓取并分析微博热搜词数据。一、爬虫技术概述与
- 【人工智能 | 大数据】基于人工智能的大数据分析方法
用心去追梦
人工智能大数据数据分析
基于人工智能(AI)的大数据分析方法是指利用机器学习、深度学习和其他AI技术来分析和处理大规模数据集。这些方法能够自动识别模式、提取有用信息,并做出预测或决策,从而帮助企业和组织更好地理解市场趋势、客户行为以及其他关键因素。以下是几种主要的基于AI的大数据分析方法:机器学习模型:通过训练算法让计算机从历史数据中学习并做出预测或分类。常见的机器学习技术包括监督学习(如回归分析、支持向量机)、非监督学
- hive电影数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫2万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
毕业设计大数据毕设计算机毕业设计hivespringboot爬虫
hive电影数据分析Springboot协同过滤-余弦函数推荐系统爬虫2万+数据大屏数据展示+[手把手视频教程和开发文档]【功能介绍】1.java爬取【豆瓣电影】网站中电影数据,保存为data.csv文件,数据量2万+2.data.csv上传到hadoop集群环境3.MR数据清洗data.csv4.Hive汇总处理,将Hive处理的结果数据保存到本地Mysql数据库中5.Springboot+Vu
- hadoop电影数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫2万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
计算机毕业设计毕业设计大数据毕设hadoopspringboot爬虫
全套视频教程全套开发文档hadoop电影数据分析系统Springboot协同过滤-余弦函数推荐系统爬虫2万+数据大屏数据展示【Hadoop项目】1.java爬取【豆瓣电影】网站中电影数据,保存为data.csv文件,数据量2万+2.data.csv上传到hadoop集群环境3.data.csv数据清洗4.MR数据汇总处理,将Reduce的结果数据保存到本地Mysql数据库中5.Springboot
- spark电影数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫2万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
毕业设计大数据毕设计算机毕业设计sparkspringboot爬虫大数据电影推荐电影分析
spark电影数据分析系统Springboot协同过滤-余弦函数推荐系统爬虫2万+数据大屏数据展示+[手把手视频教程和开发文档【功能介绍】1.java爬取【豆瓣电影】网站中电影数据,保存为data.csv文件,数据量2万+2.data.csv上传到hadoop集群环境3.MR数据清洗data.csv4.Spark汇总处理,将Spark处理的结果数据保存到本地Mysql数据库中5.Springboo
- hadoop图书数据分析系统 Springboot协同过滤-余弦函数推荐系统 爬虫1万+数据 大屏数据展示 + [手把手视频教程 和 开发文档]
QQ-1305637939
毕业设计大数据毕设图书数据分析hadoopspringboot爬虫
hadoop图书数据分析系统Springboot协同过滤-余弦函数推荐系统爬虫1万+数据大屏数据展示+[手把手视频教程和开发文档]【亮点功能】1.Springboot+Vue+Element-UI+Mysql前后端分离2.Echarts图表统计数据,直观展示数据情况3.发表评论后,用户可以回复评论,回复的评论可以被再次回复,一级评论可以添加图片附件4.爬虫图书数据1万+5.推荐图书列表展示,推荐图
- 基于MATLAB机器学习、深度学习实践技术应用
梦想的初衷~
机器学习人工智能matlab机器学习深度学习
近年来,MATLAB在机器学习和深度学习领域的发展取得了显著成就。其强大的计算能力和灵活的编程环境使其成为科研人员和工程师的首选工具。在无人驾驶汽车、医学影像智能诊疗、ImageNet竞赛等热门领域,MATLAB提供了丰富的算法库和工具箱,极大地推动了人工智能技术的应用和创新。原文链接https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=224
- ChatGPT搜索漏洞:AI代码生成器安全隐患及应对策略
前端
近年来,随着人工智能技术的飞速发展,各种AI代码生成器层出不穷,为程序员带来了极大的便利。然而,技术进步的同时也伴随着安全风险的提升。最近,OpenAI的ChatGPT搜索工具曝出重大安全漏洞,引发了业界广泛关注。本文将深入探讨该漏洞的细节、影响以及应对措施,并展望未来AI工具安全发展趋势。ChatGPT作为一款强大的AI工具,其搜索功能本意是帮助用户快速获取信息。然而,英国卫报近期报道揭露了Ch
- 大数据组件之Azkaban简介
努力的小星星
大数据linux运维数据结构
一、Azkaban介绍1.1背景一个完整的大数据分析系统,必然由很多任务单元(如数据收集、数据清洗、数据存储、数据分析等)组成,所有的任务单元及其之间的依赖关系组成了复杂的工作流。复杂的工作流管理涉及到很多问题:如何定时调度某个任务?如何在某个任务执行完成后再去执行另一个任务?如何在任务失败时候发出预警?......面对这些问题,工作流调度系统应运而生。Azkaban就是其中之一。1.2功能Azk
- 分析-MQ消息队列中间件-在IM即时通讯系统的用途
酱油瓶啤酒杯
中间件分布式队列kafka
MQ消息队列在IM即时通讯的用途1)用户聊天消息的离线存储环节:因为IM消息的发送属于高吞吐场景,直接操作DB可能会让DB崩溃,所有离线消息在落地入库前,可以先扔到MQ消息队列中,再由单独部署的消费者来有节奏地存储到DB中;2)用户的行为数据收集环节:因为用户的聊天消息和指令等,可以用于大数据分析,而且基于国家监管要求也是必须要存储一段时间的,所以此类数据的收集同样可以用于MQ消息队列,再由单独部
- 降维算法:主成分分析
一个人在码代码的章鱼
数学建模机器学习概率论
主成分分析一种常用的数据分析技术,主要用于数据降维,在众多领域如统计学、机器学习、信号处理等都有广泛应用。主成分分析是一种通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量(即主成分)的方法。这些主成分按照方差从大到小排列,方差越大,包含的原始数据信息越多。通常会选取前几个方差较大的主成分,以达到在尽量保留原始数据信息的前提下降低数据维度的目的。它通过将多个指标转换为少数几个主成分,
- 数据分析 基础定义
阿金要当大魔王~~
数据分析数据分析数据挖掘
一、大数据的定义数据分析是基于商业等目的,有目的的进行收集、整理、加工和分析数据,提炼有价值信息的过程。大数据分析即针对海量的、多样化的数据集合的分析大数据分析是一种利用大规模数据集进行分析和挖掘知识的方法。随着互联网、社交媒体、移动设备等产生庞大的数据,大数据分析成为了当今世界各行业的重要技术。这篇文章将从数据收集、存储、处理、分析、可视化、应用等方面进行全面讲解,以帮助读者更好地理解大数据分析
- 深入解析如何进行TensorFlow框架下的算子开发与适配插件开发:基于昇腾AI的完整流程
快撑死的鱼
华为昇腾AscendC的算子开发系统学习人工智能tensorflowpython
深入解析如何进行TensorFlow框架下的算子开发与适配插件开发:基于昇腾AI的完整流程在人工智能领域中,算子(Operator)作为深度学习模型的基础执行单元,决定了整个模型的计算性能和结果准确性。随着硬件平台的多样化,如何将第三方深度学习框架中的算子适配到特定的硬件平台变得至关重要。本文将深入探讨如何在TensorFlow框架下开发适配昇腾AI处理器的算子插件,通过解析算子属性映射、数据排布
- 大数据分析专业毕业设计最新最全选题精华汇总--持续更新中⑤
源码空间站11
pythondjango大数据分析数据可视化hadoophive大数据分析毕设
目录前言开题指导建议更多精选选题选题帮助最后前言大家好,这里是源码空间站学长大数据分析专业毕业设计毕设专题!大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了大数据分析专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!以下是学长精心整理的一些选题:21.基于Hadoop和Spa
- Python从0到100(八十三):神经网络-使用残差网络RESNET识别手写数字
是Dream呀
python神经网络网络
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 解锁辅助驾驶新境界:基于昇腾 AI 异构计算架构 CANN 的应用探秘
倔强的石头_
AIGC人工智能架构
博客主页:倔强的石头的CSDN主页Gitee主页:倔强的石头的gitee主页⏩文章专栏:《AI大模型》期待您的关注目录一、引言二、CANN是什么1.异构计算与人工智能的关系2.CANN的定义和作用3.CANN的技术优势三、基于CANN的辅助驾驶AI应用原理1.目标检测算法2.智能检测流程3.算力平台支持四、基于CANN的辅助驾驶AI优势1.高效训练2.精准检测3.快速编程4.产业应用五、部署实操六
- 探秘IO分布式模块设计:让大数据处理更高效
清水湾落车
分布式
一、引言随着互联网的飞速发展,大数据、云计算、人工智能等技术逐渐成为时代的主流。在这个数据爆炸的时代,如何高效地处理海量数据成为企业面临的重大挑战。IO分布式模块设计作为一种有效的解决方案,越来越受到关注。本文将带您了解IO分布式模块设计的基本概念、原理及其在实际应用中的优势。二、什么是IO分布式模块设计?IO分布式模块设计,是指将数据存储、数据处理、数据传输等IO操作进行分布式处理的一种设计方法
- 【人工智能】Python实战:构建高效的多任务学习模型
蒙娜丽宁
Python杂谈AI人工智能python学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界多任务学习(Multi-taskLearning,MTL)作为机器学习领域中的一种重要方法,通过在单一模型中同时学习多个相关任务,不仅能够提高模型的泛化能力,还能有效利用任务间的共享信息。本文深入探讨了多任务学习的基本概念、优势及其在实际应用中的重要性。
- Python读取通达信日线数据(.day文件)
逝去的紫枫
Pythonpython
Python读取通达信日线数据(.day文件)1.day文件位置2.day文件内容的构成3.Python代码识别day文件4.将识别结果输出为csv文件5.最终结果展示在金融数据分析中,通达信软件提供的数据文件(如日线数据文件.day)是非常宝贵的资源。本文将详细介绍如何使用Python读取和解析这些文件,并将解析结果输出为CSV文件,以便进行进一步的数据分析和处理。1.day文件位置通达信日线数
- 以Python构建ONE FACE管理界面:从基础至进阶的实战探索
Allen_LVyingbo
pythonpythonpyqt
一、引言1.1研究背景与意义在人工智能技术蓬勃发展的当下,面部识别技术凭借其独特优势,于安防、金融、智能终端等众多领域广泛应用。在安防领域,可助力监控系统精准识别潜在威胁人员,提升公共安全保障水平;金融行业中,实现刷脸支付、远程开户等便捷服务,优化用户体验并强化交易安全。智能终端方面,为设备解锁、身份验证等功能提供支持,提升设备使用的便捷性与安全性。然而,现有面部识别系统在数据安全、检索效率及用户
- 明达云:赋能化工园区,智绘安全高效新蓝图
明达技术
物联网网络
在日新月异的科技浪潮中,数字化转型已成为各行各业转型升级的关键驱动力。尤其在化工这一关乎国家经济命脉与安全环保的重要领域,如何实现智能化管理、提升运营效率、确保生产安全,成为了摆在众多化工园区面前的重大课题。在此背景下,明达云平台以其卓越的技术实力与深厚的行业经验,正逐步成为化工园区智慧化升级的首选伙伴。智慧监管,安全先行化工生产,安全为先。明达云平台通过集成物联网、大数据、人工智能等先进技术,为
- AI大模型:开启智能革命新纪元
洋洋科创星球
AI项目管理赋能实战人工智能
1.AI大模型技术:智能革命的新引擎自2022年11月30日OpenAI推出ChatGPT以来,这一大型语言模型(LLM)迅速走红,标志着AI领域进入了一个新的发展阶段,即AI大模型时代。这一时代预示着AI正朝着通用人工智能(AGI)的方向发展。尽管业界对大模型的定义尚未统一,但通常指的是基于Transformer框架的大型语言模型,广义上也包括了多模态大模型,如涉及语言、声音、图像、视频等,技术
- 比亚迪进军具身智能:未来实验室的战略布局与挑战
前端
比亚迪,这家以新能源汽车闻名全球的企业,正在悄然布局一个全新的领域——具身智能及机器人技术。近日,比亚迪成立未来实验室的消息引发广泛关注,其战略意义和未来发展前景值得我们深入探讨。在人工智能技术飞速发展的今天,选择合适的AI写代码工具对于项目的成功至关重要。比亚迪未来实验室的战略意义:汽车基因与智能融合比亚迪进军机器人领域并非偶然之举。其深厚的汽车制造经验和规模化生产能力,为其在机器人研发方面奠定
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比